强激光与粒子束, 2018, 30 (8): 081003, 网络出版: 2018-08-21   

石墨烯覆盖微纳光纤复合波导全光优先吸收特性

All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide
作者单位
1 四川大学 电子信息学院, 成都 610065
2 华北光电技术研究所, 北京 100015
摘要
利用二氧化碳激光器加热法,将普通单模光纤拉制成微纳光纤,用湿法转移石墨烯覆盖在微纳光纤上构成复合波导,不同波长的光通过耦合器进入复合波导,以倏逝波的形式与石墨烯相互作用,开展石墨烯优先吸收特性的研究。当短波作为泵浦光时,随着入射强度的增长,测得输出端长波信号光光谱的变化,获得了约3.5 dB的调制深度,0.62 dB·mW-1的调制效率。当长波作为泵浦光并改变入射光强时,在输出端测得作为信号光的短波透过率变化约1.9%。实验结果表明,随着任意波长泵浦光入射光强的增长,复合波导对其表现出优先吸收的特性。实验还测试了长波和短波分别经过复合波导后透过率随输入功率的变化,得出长波的透过率增加速度比短波更快,并从能带和倏逝波两方面作出了对应的理论分析。
Abstract
In this paper, the normal single-mode fiber is pulled into microfiber by the method of carbon dioxide laser heating, wet method is used to transfer graphene and cover microfiber to form a composite waveguide. The light of different wavelengths enters the composite waveguide through the coupler, interacts with graphene in the form of evanescent waves, thus the research experiment of preferential absorption characteristic is carried out. When a short wave light was used as a pump light, changes in the long wave spectrum with the increase of incident intensity were measured, obtaining a modulation depth of about 35 dB, and a modulation efficiency of 0.62 dB·mW-1. When the long wave light was used as the pump light, the light transmittance of the short wave signal was measured to change by ~1.9%. The experimental results show that with the increase of the incident light intensity of the pump light at any wavelength, the composite waveguide exhibits its preferential absorption characteristics. In addition, when the long-wave and short-wave waves passed through the composite waveguide, the transmittance changes with the input power were tested, experiments show that the long-wavelength transmittance increases faster than the short-wavelength transmittance, and the corresponding theoretical analysis can be made from the two aspects of energy band and evanescent wave.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666.

[2] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[3] 吴凌远, 李阳龙, 刘国栋, 等. 1064 nm纳秒激光对石墨烯的损伤效应研究[J]. 强激光与粒子束, 2015, 27: 081009. (Wu Lingyuan, Li Yanglong, Liu Guodong, et al. 1064 nm nanosecond laser induced damage effection graphene. High Power Laser and Particle Beams, 2015, 27: 081009)

[4] 李艳娜, 汤跃, 韦丽萍, 等. SOI环形光波导谐振腔双层石墨烯调制器[J]. 强激光与粒子束, 2015, 27: 024109.(Li Yanna, Tang Yue, Wei Liping, et al. SOI-ring waveguide coupled double-layer graphene modulator. High Power Laser and Particle Beams, 2015, 27: 024109)

[5] Liu Ming, Yin Xiaobo, Ulinavila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64.

[6] Koester S J, Li Mo. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Applied Physics Letters, 2012, 100(17): 611.

[7] Liu Ming, Yin Xiaobo, Zhang Xiang. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482.

[8] Lee C C, Suzuki S, Xie W, et al. Broadband graphene electro-optic modulators with sub-wavelength thickness[J]. Optics Express, 2012, 20(5): 5264-5269.

[9] Luo Siyuan, Wang Yanan, Xin Tongxin, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199.

[10] Liu Z B, Feng M, Jiang W S, et al. Broadband all-optical modulation using a graphene-covered-microfiber[J]. Laser Physics Letters, 2013, 10: 065901.

[11] Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955.

[12] Liao Y, Feng G Y, Zhou H, et al. Ultra-broadband all-optical graphene modulator[J]. IEEE Photonics Technology Letters, 2018, 30(8): 661-664.

[13] Wang Ruiduo, Li Diao, Wu Hao, et al. All-optical intensity modulator by polarization dependent graphene-microfiber waveguide[J]. IEEE Photonics Journal, 2017, 9(5): 1-8.

[14] 张慧, 陈宇, 王志腾, 等. 石墨烯可调谐被动调Q掺铒光纤激光器[J]. 强激光与粒子束, 2012, 24(12): 2807-2810.(Zhang Hui, Chen Yu, Wang Zhiteng, et al. Wavelength-tunable passively Q-switched erbium doped fiber laser with graphene-based saturable absorber. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810)

[15] Xing Guichuan, Guo Hangchen, Zhang Xinhai, et al. The physics of ultrafast saturable absorption in graphene[J]. Optics Express, 2010, 18(5): 4564.

[16] Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12): 2667-2673.

[17] Chen Jinhui, Zheng Bicai, Shao Guanghao, et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light Science & Applications, 2015, 4(12): e360.

[18]

    Zhang H, Healy N, Li S, et al. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss[J]. Scientific Reports, 2016, 6: 23512.

[19] Garmire E. Resonant optical nonlinearities in semiconductors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 6(6): 1094-1110.

[20] Ruzicka B A, Wang Shuai, Liu Jianwei, et al. Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition[J]. Optical Materials Express, 2012, 2(6): 708-716.

[21] Zhang F, Han S, Liu Y, et al. Dependence of the saturable absorption of graphene upon excitation photon energy[J]. Applied Physics Letters, 2015, 106(9): 666-669.

莫军, 冯国英, 廖宇, 杨莫愁, 周寿桓. 石墨烯覆盖微纳光纤复合波导全光优先吸收特性[J]. 强激光与粒子束, 2018, 30(8): 081003. Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!