激光技术, 2020, 44 (2): 212, 网络出版: 2020-04-04  

激光冲击对AISI430铁素体不锈钢抗蚀性影响

Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel
作者单位
江苏大学 机械工程学院,镇江 212013
摘要
为了提升AISI430铁素体不锈钢的表面抗腐蚀性能,采用激光冲击的方法强化了AISI430铁素体不锈钢。通过极化曲线及电化学阻抗谱等电化学实验方法,结合试样表面残余应力及腐蚀形貌,研究了激光冲击工艺对AISI430铁素体不锈钢的抗腐蚀能力的影响。结果表明,强化处理后试样表面出现残余压应力层,残余应力最大幅值高达-339MPa,并以近乎递减的方式延深度方向达到900μm;激光冲击强化使试样在NaCl溶液中的自腐蚀电位由-251mV最大提升至-192mV,腐蚀电流密度最多降低28.18μA/cm-2,使阻抗谱的容抗弧的半径变大,腐蚀凹坑和条带状腐蚀减少。激光冲击强化了AISI430铁素体不锈钢在NaCl溶液中的抗腐蚀性能。
Abstract
In order to improve the surface corrosion resistance of AISI430 ferritic stainless steel, laser shock peening(LSP) was used to strengthen AISI430 ferritic stainless steel. Polarization curves and electrochemical impedance spectroscopy were used to study the effect of laser shock processing on corrosion resistance of AISI430 ferritic stainless steel, combined with surface residual stress and corrosion morphology of the specimens. The results show that, residual compressive stress layer appears on specimens surface after strengthening treatment. The maximum residual stress is -339MPa. The depth direction is extended to 900μm in a nearly decreasing manner. Self corrosion potential of the sample in NaCl solution increases from -251mV to -192mV. Corrosion current density can be reduced by 28.18μA/cm-2 at most. It enlarges the radius of capacitive arc of impedance spectrum. Corrosion pits and strip corrosion are reduced. LSP strengthens corrosion resistance of AISI430 ferritic stainless steel in NaCl solution.
参考文献

[1] GARDNER L. The use of stainless steel in structures[J]. Progress in Structural Engineering & Materials, 2010, 7(2): 45-55.

[2] KIM J K, KIM Y H, SANG H U, et al. Intergranular corrosion of Ti-stabilized 11wt% Cr ferritic stainless steel for automotive exhaust systems[J]. Corrosion Science, 2009, 51(11): 2716-2723.

[3] BADDOO N R. Stainless steel in construction: A review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research, 2008, 64(11): 1199-1206.

[4] CHESS P M, BROOMFIELD J P. Cathodic protection of steel in concrete[J]. Health Estate, 2002, 56(10):34-36.

[5] LI Zh Y, WANG Q Q, CUI Q W, et al. Optimization of nickel-tungsten carbide composite plating process and corrosion resistance of coating[J]. Electropating & Finishing, 2017,36(5):231-234(in Chinese).

[6] LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16):5354-5362.

[7] NIKITIN I, ALTENBERGER I, SCHOLTES B. Residual stress state and cyclic deformation behaviour of deep rolled and laser-shock peened AISI 304 stainless steel at elevated temperatures[J]. Materials Science Forum, 2005, 490/491:376-383.

[8] YANG T, ZHOU W F, YANG J D, et al. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. Laser Technology, 2017, 41(4):526-530(in Chinese).

[9] YANG J D, ZHOU W F, YANG T, et al. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5):754-758(in Chinese).

[10] GE M Z, XIANG J Y, ZHANG Y K. Effect of laser shock processing on mechanical properties of AZ31B magnesium alloy[J]. Journal of Materials Engineering, 2013, 3(9): 54-59.

[11] LU J Z, HAN B, CUI C Y, et al. Electrochemical and pitting corrosion resistance of AISI4145 steel subjected to massive laser shock peening treatment with different coverage layers[J]. Optics & Laser Technology, 2017, 88: 250-262.

[12] EBRAHIMI M, AMINI S, MAHDAVI S M. The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5/8): 1557-1565.

[13] FATTAH-ALHOSSEINI A, VAFAEIAN S. Comparison of electrochemical behavior between coarse-grained and fine-grained AISI430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements[J]. Journal of Alloys & Compounds, 2015, 639: 301-307.

[14] AMAR H, VIGNAL V, KRAWIEC H, et al. Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy[J]. Corrosion Science, 2011, 53(10): 3215-3221.

[15] CARMEZIM M J, SIMES A M, MONTEMOR M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel[J]. Corrosion Science, 2005, 47(3):581-591.

[16] WEI X L, ZHANG CH, LING X. Effects of laser shock processing on corrosion resistance of AISI304 stainless steel in acid chloride solution[J]. Journal of Alloys & Compounds, 2017, 723: 237-242.

[17] YANG R Ch, BI H J, NIU Sh R, et al. Localized corrosion resistance of 409L and 430 ferritic stainless steels [J]. Journal of University of Science and Technology Beijing, 2011, 33(4):428-433(in Chinese).

[18] XU Sh D. Research of grain refinement and corrosion resistence strengthening of laser shock processing on GH2036 alloy[D].Zhenjiang: Jiangsu University, 2016: 47-53(in Chinese).

金成嘉, 陈炳泉, 李纬, 焦加飞, 任旭东. 激光冲击对AISI430铁素体不锈钢抗蚀性影响[J]. 激光技术, 2020, 44(2): 212. JIN Chengjia, CHEN Bingquan, LI Wei, JIAO Jiafei, REN Xudong. Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel[J]. Laser Technology, 2020, 44(2): 212.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!