中国激光, 2018, 45 (9): 0911004, 网络出版: 2018-09-08   

石英增强光声传感技术研究进展 下载: 1650次特邀综述

Recent Progress in Quartz-Enhanced Photoacoustic Spectroscopy
作者单位
1 山西大学量子光学与光量子器件国家重点实验室, 激光光谱研究所, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

董磊, 武红鹏, 郑华丹, 尹旭坤, 马维光, 张雷, 尹王保, 肖连团, 贾锁堂. 石英增强光声传感技术研究进展[J]. 中国激光, 2018, 45(9): 0911004.

Dong Lei, Wu Hongpeng, Zheng Huadan, Yin Xukun, Ma Weiguang, Zhang Lei, Yin Wangbao, Xiao Liantuan, Jia Suotang. Recent Progress in Quartz-Enhanced Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911004.

参考文献

[1] Hodgkinson J, Smith R, Ho W O, et al. Non-dispersive infrared (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor[J]. Sensors and Actuators B, 2013, 186: 580-588.

[2] Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535.

[3] Cheung A S C, Ma T, Chen H. High-resolution cavity enhanced absorption spectroscopy using an optical cavity with ultra-high reflectivity mirrors[J]. Chemical Physics Letters, 2002, 353: 275-280.

[4] 陈颖, 高光珍, 蔡廷栋. 基于光声光谱的乙烯探测技术[J]. 中国激光, 2017, 44(5): 0511001.

    Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 0511001.

[5] Dong L, Wu H, Zheng H, et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2014, 39(8): 2479-2482.

[6] Zheng H, Lou M, Dong L, et al. Compact photoacoustic module for methane detection incorporating interband cascade light emitting device[J]. Optics Express, 2017, 25(14): 16761-16770.

[7] Yin X, Dong L, Wu H, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser[J]. Sensors and Actuators B, 2017, 247: 329-335.

[8] Yin X K, Dong L, Wu H P, et al. Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J]. Applied Physics Letters, 2017, 111(3): 031109.

[9] Yin X K, Dong L, Wu H P, et al. Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express, 2017, 25(26): 32581-32590.

[10] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21): 1902-1904.

[11] Patimisco P, Scamarcio G, Tittel F, et al. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors, 2014, 14(4): 6165-6206.

[12] Friedt J M, Carry É. Introduction to the quartz tuning fork[J]. American Journal of Physics, 2007, 75(5): 415-422.

[13] Zheng H, Dong L, Wu H, et al. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis[J]. Chemical Physics Letters, 2017, 691: 462-472.

[14] Liu K, Guo X, Yi H, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2009, 34(10): 1594-1596.

[15] Liu K, Yi H, Kosterev A A, et al. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation[J]. Review of Scientific Instruments, 2010, 81(10): 103103.

[16] Yi H, Liu K, Sun S, et al. Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor[J]. Optics Communications, 2012, 285(24): 5306-5312.

[17] Dong L, Kosterev A A, Thomazy D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 2010, 100(3): 627-635.

[18] Cao Y, Jin W, Ho H L. Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy[J]. Sensors and Actuators B, 2012, 174(11): 24-30.

[19] Yi H, Maamary R, Gao X, et al. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy[J]. Applied Physics Letters, 2015, 106(10): 101109.

[20] Yin X K, Dong L, Zheng H D, et al. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser[J]. Sensors, 2016, 16(2): 162.

[21] Wu H P, Dong L, Liu X L, et al. Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH3 and H2S[J]. Sensors, 2015, 15(10): 26743-26755.

[22] Dong L, Lewicki R, Liu K, et al. Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics B, 2012, 107(2): 275-283.

[23] Zheng H, Dong L, Liu X, et al. Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection[J]. Laser Physics, 2015, 25(12): 125601.

[24] Dong L, Kosterev A A, Thomazy D, et al. Compact portable QEPAS multi-gas sensor[J]. Proceedings of SPIE, 2011, 7945: 79450R.

[25] Wu H, Dong L, Ren W, et al. Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy[J]. Sensors and Actuators B, 2015, 206: 364-370.

[26] Wu H, Dong L, Zheng H, et al. Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser[J]. Sensors and Actuators B, 2015, 221: 666-672.

[27] Gong P, Xie L, Qi X Q, et al. A QEPAS-based central wavelength stabilized diode laser for gas sensing[J]. IEEE Photonics Technology Letters, 2015, 27(5): 545-548.

[28] Ma Y, Yu G, Zhang J, et al. Sensitive detection of carbon monoxide based on a QEPAS sensor with a 2.3 μm fiber-coupled antimonide diode laser[J]. Journal of Optics, 2015, 17(5): 055401.

[29] Li Z, Shi C, Ren W. Mid-infrared multimode fiber-coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection[J]. Optics Letters, 2016, 41(17): 4095-4098.

[30] Li Z, Wang Z, Wang C, et al. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection[J]. Applied Physics B, 2016, 122(5): 147.

[31] Ma Y, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Optics Express, 2013, 21(1): 1008-1019.

[32] Gong P, Xie L, Qi X, et al. A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air[J]. Chinese Physics B, 2015, 24(1): 014206.

[33] Wang Z, Geng J, Ren W. Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis[J]. Applied Spectroscopy, 2017, 71(8): 1834-1841.

[34] Wang Z, Wang Q, Ching Y L, et al. A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser[J]. Sensors and Actuators B, 2017, 246: 710-715.

[35] Ren W, Jiang W, Sanchez N P, et al. Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser[J]. Applied Physics Letters, 2014, 104(4): 041117.

[36] Yan C, Forsberg E, Chen J, et al. Modeling and implementation of a fiber-based quartz-enhanced photoacoustic spectroscopy system[J]. Applied Optics, 2015, 54(13): 4202-4206.

[37] Wang F, Chang J, Wang Q, et al. Improvement in QEPAS system based on miniaturized collimator and flat mirror[J]. Optics Communications, 2016, 381: 152-157.

[38] Ma Y, Yu G, Zhang J, et al. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks[J]. Sensors, 2015, 15(4): 7596-7604.

[39] Ma Y, He Y, Yu X, et al. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection[J]. Applied Physics Letters, 2016, 108(9): 091115.

[40] Ma Y, He Y, Yu X, et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork[J]. Sensors and Actuators B, 2016, 233: 388-393.

[41] Ma Y, Yu X, Tong Y, et al. Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork[J]. Optics Express, 2017, 25(23): 29356-29364.

[42] Ma Y, He Y, Zhang L, et al. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork[J]. Applied Physics Letters, 2017, 110(3): 031107.

[43] Dang H T, Ma Y F, Li Y, et al. High-sensitivity detection of water vapor concentration: optimization and performance[J]. Journal of Russian Laser Research, 2018, 39(1): 95-97.

[44] Ma Y F, Tong Y, He Y, et al. High-power DFB diode laser-based CO-QEPAS sensor: optimization and performance[J]. Sensors, 2018, 18(2): 122.

[45] Spagnolo V, Dong L, Kosterev A A, et al. Modulation cancellation method in laser spectroscopy[J]. Applied Physics B, 2011, 103(3): 735-742.

[46] Spagnolo V, Dong L, Kosterev A A, et al. Modulation cancellation method for measurements of small temperature differences in a gas[J]. Optics Letters, 2011, 36(4): 460-462.

[47] Spagnolo V, Dong L, Kosterev A A, et al. Modulation cancellation method for isotope 18O/ 16O ratio measurements in water [J]. Optics Express, 2012, 20(4): 3401-3407.

[48] Zheng H, Dong L, Yin X, et al. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED[J]. Sensors and Actuators B, 2015, 208: 173-179.

[49] Wu H, Dong L, Zheng H, et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications, 2017, 8: 15331.

[50] Ma Y, Yu X, Yu G, et al. Multi-quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 2015, 107(2): 021116.

[51] Zheng H D, Yin X K, Dong L, et al. Multi-quartz enhanced photoacoustic spectroscopy with different acoustic microresonator configurations[J]. Journal of Spectroscopy, 2015, 2015: 218413.

[52] Petra N, Zweck J, Kosterev A A, et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor[J]. Applied Physics B, 2009, 94(4): 673-680.

[53] Borri S, Patimisco P, Galli I, et al. Intracavity quartz-enhanced photoacoustic sensor[J]. Applied Physics Letters, 2014, 104(9): 143-162.

[54] Wojtas J, Gluszek A, Hudzikowski A, et al. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2017, 17(3): 513.

[55] Cao Y, Jin W, Ho L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Optics Letters, 2012, 37(2): 214-216.

[56] 何应, 马欲飞, 佟瑶, 等. 光纤倏逝波型石英增强光声光谱技术[J]. 物理学报, 2018, 67(2): 020701.

    He Y, Ma Y F, Tong Y, et al. Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy[J]. Acta Physica Sinica, 2018, 67(2): 020701.

[57] Li Z, Wang Z, Qi Y, et al. Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper[J]. Sensors and Actuators B, 2017, 248: 1023-1028.

[58] Sampaolo A, Patimisco P, Dong L, et al. Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes[J]. Applied Physics Letters, 2015, 107(23): 231102.

[59] Patimisco P, Sampaolo A, Dong L, et al. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing[J]. Sensors and Actuators B, 2016, 227: 539-546.

[60] Wu H, Sampaolo A, Dong L, et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing[J]. Applied Physics Letters, 2015, 107(11): 111104.

[61] Patimisco P, Sampaolo A, Dong L, et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 2018, 5(1): 011106.

[62] Zheng H, Dong L, Sampaolo A, et al. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2016, 41(5): 978-981.

[63] Patimisco P, Sampaolo A, Zheng H, et al. Quartz-enhanced photoacoustic spectrophones exploiting custom tuning forks: a review[J]. Advances in Physics: X, 2016, 2(1): 169-187.

[64] Zheng H, Dong L, Sampaolo A, et al. Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone[J]. Applied Physics Letters, 2016, 109(11): 111103.

[65] Wu H, Yin X, Dong L, et al. Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork[J]. Applied Physics Letters, 2017, 110(12): 121104.

董磊, 武红鹏, 郑华丹, 尹旭坤, 马维光, 张雷, 尹王保, 肖连团, 贾锁堂. 石英增强光声传感技术研究进展[J]. 中国激光, 2018, 45(9): 0911004. Dong Lei, Wu Hongpeng, Zheng Huadan, Yin Xukun, Ma Weiguang, Zhang Lei, Yin Wangbao, Xiao Liantuan, Jia Suotang. Recent Progress in Quartz-Enhanced Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!