Matter and Radiation at Extremes, 2018, 3 (4): 197, Published Online: Oct. 2, 2018  

Development of new diagnostics based on LiF detector for pump-probe experiments

Author Affiliations
1 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
2 Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
3 Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
4 Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
5 LULI - CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay
6 UPMC Univ Paris 06: Sorbonne Universites - F-91128 Palaiseau cedex, France
7 Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
8 ILE, Osaka University, Suita, Osaka 565-0871, Japan
9 Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
10 RIKEN Spring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
11 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
12 Universite de Bordeaux-CNRS-CEA, CELIA (Center Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
13 National Research Nuclear University MEPhI, Moscow 115409, Russia
14 LULI- CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay
15 ELI-NP/IFN-HH, Maqurele-Bucharest 077125 Romania
Abstract
We present new diagnostics for use in optical laser pump - X-ray Free Electron Laser (XFEL) probe experiments to monitor dimensions, intensity profile and focusability of the XFEL beam and to control initial quality and homogeneity of targets to be driven by optical laser pulse. By developing X-ray imaging, based on the use of an LiF crystal detector, we were able to measure the distribution of energy inside a hard X-ray beam with unprecedented high spatial resolution (~1 mm) and across a field of view larger than some millimetres. This diagnostic can be used in situ, provides a very high dynamic range, has an extremely limited cost, and is relatively easy to be implemented in pumpprobe experiments. The proposed methods were successfully applied in pump-probe experiments at the SPring-8 Angstrom Compact free electron LAser (SACLA) XFEL facility and its potential was demonstrated for current and future High Energy Density Science experiments.
References

[1] D. Milathianaki, S. Boutet, G.J. Williams, A. Higginbotham, D. Ratner, et al., Femtosecond visualization of lattice dynamics in shockcompressed matter, Science 342 (2013) 220-223.

[2] J. Gaudin, C. Fourment, B.I. Cho, K. Engelhorn, E. Galtier, et al., Towards simultaneous measurements of electronic and structural properties in ultra-fast X-ray free electron laser absorption spectroscopy experiments, Sci. Rep. 4 (2014) 4724.

[3] C.R.D. Brown, D.O. Gericke, M. Cammarata, B.I. Cho, T. D€oppner, et al., Evidence for a glassy state in strongly driven carbon, Sci. Rep. 4 (2014) 5214.

[4] B. Albertazzi, N. Ozaki, V. Zhakhovsky, A. Faenov, H. Habara, et al., Dynamic fracture of tantalum under extreme tensile stress, Science Advances 3 (2017), e1602705.

[5] B.K. McFarland, N. Berrah, C. Bostedt, J. Bozek, P.H. Bucksbaum, et al., Experimental strategies for optical pump-soft X-ray probe experiments at the LCLS, J. Phys. Conf. 488 (2014) 012015.

[6] S. de Jong, R. Kukreja, C. Trabant, N. Pontius, C.F. Chang, et al., Speed limit of the insulatoremetal transition in magnetite, Nat. Mater. 12 (2013) 882-886.

[7] N.J. Hartley, N. Ozaki, T. Matsuoka, B. Albertazzi, A. Faenov, et al., Ultrafast observation of lattice dynamics in laser-irradiated gold foils, Appl. Phys. Lett. 110 (2017) 071905.

[8] M. Yabashi, H. Tanaka, T. Ishikawa, Overview of the SACLA facility, J. Synchrotron Radiat. 22 (2015) 477-484.

[9] A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, et al., Full spatial characterization of a nanofocused X-ray free-electron laser beam by ptychographic imaging, Sci. Rep. 3 (2013) 1633.www.nature.comientificreport.

[10] S. Matsuyama, H. Yokoyama, R. Fukui, Y. Kohmura, K. Tamasaku, et al., Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry, Optic Express 20 (2012) 24977-24986.

[11] J. Chalupsky′, P. Boh_a_cek, T. Burian, V. H_ajkov_a, S.P. Hau-Riege, et al., Imprinting a focused X-ray laser beam to measure its full spatial characteristics, Phys. Rev. Applied 4 (2015) 014004.

[12] B. Floter, P. Juranic, P. Gro mann, S. Kapitzki, B. Keitel, et al., Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements, NIMA 635 (2011) S108-S112.

[13] J.H. Schulman, W.D. Compton, Color Centers in Solids, Oxford, Pergamon, 1962.

[14] G. Baldacchini, F. Bongfigli, F. Flora, R.M. Montereali, D. Murra, et al., High-contrast photoluminiscent patterns in lithium fluoride crystals produced by soft X-rays from a laser-plasma source, Appl. Phys. Lett. 80 (2002) 4810-4812.

[15] G. Baldacchini, F. Bongfigli, A. Faenov, F. Flora, R.M. Montereali, et al., Lithium fluoride as a novel X-ray image detector for biological m-world capture, J. Nanosci. Nanotechnol. 3 (2003) 483-486.

[16] G. Baldacchini, S. Bollanti, F. Bonfigli, F. Flora, P. Di Lazzaro, et al., Soft X-ray submicron imaging detectors based on point defects in LiF, Rev. Sci. Instrum. 76 (2005) 113104.

[17] A. Ustione, A. Cricenti, F. Bonfigli, F. Flora, A. Lai, et al., Scanning near-field optical microscopy images of microradiographs stored in lithium fluoride films with an optical resolution of l/12, Appl. Phys. Lett. 88 (2006) 141107.

[18] A. Ya. Faenov, Y. Kato, M. Tanaka, T.A. Pikuz, M. Kishimoto, et al., Submicrometer-resolution in situ imaging of the focus pattern of a soft X-ray laser by color center formation in LiF crystal, Optic Lett. 34 (2009) 941-943.

[19] T. Pikuz, A. Faenov, Y. Fukuda, M. Kando, P. Bolton, et al., Optical features of a LiF crystal soft X-ray imaging detector irradiated by free electron laser pulses, Optic Express 20 (4) (2012) 3424-3433.

[20] T.A. Pikuz, A. Ya. Faenov, Y. Fukuda, M. Kando, P. Bolton, et al., Soft X-ray Free-Electron Laser imaging by LiF crystal and film detectors over a wide range of fluences, Appl. Optic. 52 (2013) 509-515.

[21] T. Pikuz, A. Faenov, T. Matsuoka, S. Matsuyama, K. Yamauchi, et al., 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector, Sci. Rep. 5 (2015) 17713.

[22] A.N. Grum-Grzhimailo, T. Pikuz, A. Faenov, T. Matsuoka, N. Ozaki, et al., On the size of the secondary electron cloud in crystals irradiated by hard X-ray photons, Eur. Phys. J. D 71 (2017) 69.

[23] M. Ruiz-Lopez, A. Faenov, T. Pikuz, N. Ozaki, A. Mitrofanov, et al., Coherent X-ray beam metrology using 2D high-resolution Fresneldiffraction analysis, J. Synchrotron Radiat. 24 (2017) 196-204.

T. Pikuz, A. Faenov, N. Ozaki, T. Matsuoka, B. Albertazzi, N.J. Hartley, K. Miyanishi, K. Katagiri, S. Matsuyama, K. Yamauchi, H. Habara, Y. Inubushi, T. Togashi, H. Yumoto, H. Ohashi, Y. Tange, T. Yabuuchi, M. Yabashi, A.N. Grum-Grzhimailo, A. Casner, I. Skobelev, S. Makarov, S. Pikuz, G. Rigon, M. Koenig, K.A. Tanaka, T. Ishikawa, R. Kodama. Development of new diagnostics based on LiF detector for pump-probe experiments[J]. Matter and Radiation at Extremes, 2018, 3(4): 197.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!