强激光与粒子束, 2013, 25 (6): 1435, 网络出版: 2013-04-23   

110 GHz太赫兹波大气击穿阈值及最大传输能量密度

Air breakdown threshold and maximum transmitted energy density of 110 GHz terahertz waves
作者单位
西南交通大学 电磁场与微波技术研究所, 成都 610031
摘要
随着110 GHz高功率太赫兹波功率容量的提升,其引起的大气击穿问题越来越受到重视。将若干等效电离参数表达式引入到电子雪崩密度方程中,计算了不同压强下的大气击穿阈值。结果表明,由Ali等效电离参数得到的110 GHz击穿阈值与实验数据符合得很好。在此基础上,利用Ali等效电离参数对逃逸传输能量密度与太赫兹波振幅的关系进行了分析。结果表明,当太赫兹波振幅小于击穿阈值时,逃逸传输能量密度随功率密度的增加线性增加;当太赫兹波振幅大于击穿阈值时,逃逸传输能量密度随功率密度先减小后增大。
Abstract
With the development of the power capacity of 110 GHz high-power terahertz waves, the air breakdown by 110 GHz high-power terahertz waves has drawn more and more attention. Several approximations of effective ionization parameters are introduced into the equation of the electron avalanche density, and the breakdown thresholds are calculated at different pressures. The results show that the breakdown thresholds from Ali effective ionization parameters agree very well with the experimental result. The dependence of transmitted energy density on the electric amplitude is also investigated using Ali effective ionization parameters. The results show that, the transmitted energy density increases with the power density linearly when the amplitude is lower than the breakdown threshold; but the transmitted energy density first increases with the amplitude and then decreases when the amplitude is larger than the breakdown threshold.
参考文献

[1] Jastrow C, Munter K, Piesiewicz R. 300 GHz transmission system[J]. Electronics Lett, 2008, 44(3): 213-214.

[2] Jastrow C, Priebe S, Spitschan B. Wireless digital data transmission at 300 GHz[J]. Electronics Lett, 2010, 46(9): 661-663.

[3] Avent R K, Shelton J D, Brown P. The ALCOR C-band imaging radar[J]. IEEE Trans on Antennas Propag, 1996, 38(3): 16-27.

[4] Linde G J, Ngo M T, Danly B G, et al. WARLOC: A high-power coherent 94 GHz radar[J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(3): 1102-1117.

[5] Galoda S, Singh G. Fighting terrorism with terahertz[J]. IEEE Potentials, 2007, 26(6): 24-29.

[6] Alan C, Michael S, Richard T. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 2010, 97: 011504.

[7] ALI A W. Intense and short pulse electric field (DC and microwave) air breakdown parameters[R]. Washington: Naval Research Lab, 1986: 11-17.

[8] Kuo S P, Zhang Y S. A theoretical model for intense microwave pulse propagation in an air breakdown environment[J]. Phys Fluids B, 1991,3(10): 2906-2912.

[9] Barashenkov V S, Grachev L P, Esakov I I, et al. Breakdown in air in a rising microwave field[J]. Technical Physics, 2000, 45(10): 1265-1270.

[10] 段耀勇,陈雨生.高功率微波脉冲大气击穿及其对能量传输的影响[J].微波学报, 2000, 16(3): 260-264.(Duan Yaoyong, Chen Yusheng. Air breakdown of high power microwave pulse and its effect on transmitted energy. Journal of Microwave, 2000, 16(3): 260-264)

[11] Lofgren M, Anderson D, Lisak M, et al. Breakdown-induced distortion of high-power microwave pulses in air[J]. Phys Fluids B, 1991, 3(12): 3528-3531.

朱连燕, 廖成, 杨丹, 赵朋程. 110 GHz太赫兹波大气击穿阈值及最大传输能量密度[J]. 强激光与粒子束, 2013, 25(6): 1435. Zhu Lianyan, Liao Cheng, Yang Dan, Zhao Pengcheng. Air breakdown threshold and maximum transmitted energy density of 110 GHz terahertz waves[J]. High Power Laser and Particle Beams, 2013, 25(6): 1435.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!