激光与光电子学进展, 2020, 57 (16): 160001, 网络出版: 2020-08-05   

变参数计算成像技术研究进展 下载: 2657次封面文章特邀综述

Research Progress on Parameter-Changed Computational Imaging Techniques
作者单位
哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
引用该论文

郭澄, 耿勇, 翟玉兰, 左琴, 温秀, 刘正君. 变参数计算成像技术研究进展[J]. 激光与光电子学进展, 2020, 57(16): 160001.

Cheng Guo, Yong Geng, Yulan Zhai, Qin Zuo, Xiu Wen, Zhengjun Liu. Research Progress on Parameter-Changed Computational Imaging Techniques[J]. Laser & Optoelectronics Progress, 2020, 57(16): 160001.

参考文献

[1] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 020001.

    Shao X P, Liu F, Li W, et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001.

[2] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3): 3129-3143.

[3] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

[4] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature Methods, 2007, 4(9): 717-719.

[5] 张华, 曹良才, 金国藩, 等. 基于压缩感知算法的无透镜数字全息成像研究[J]. 激光与光电子学进展, 2020, 57(8): 080001.

    Zhang H, Cao C L, Jin G F, et al. Lensless digital holographic imaging based on compressive sensing algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(8): 080001.

[6] 季向阳. 编码摄像[J]. 光学学报, 2020, 40(1): 0111012.

    Ji X Y. Coded photography[J]. Acta Optica Sinica, 2020, 40(1): 0111012.

[7] 王飞, 王昊, 卞耀明, 等. 深度学习在计算成像中的应用[J]. 光学学报, 2020, 40(1): 0111002.

    Wang F, Wang H, Bian Y M, et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 2020, 40(1): 0111002.

[8] Zhang J L, Chen Q, Li J J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15): 3714-3717.

[9] Chowdhury S, Chen M, Eckert R, et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images[J]. Optica, 2019, 6(9): 1211-1219.

[10] Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.

[11] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-246.

[12] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[13] 程北, 张雪杰, 刘诚, 等. 基于衍射重建叠层相位恢复术的平面偏振双折射测量[J]. 中国激光, 2019, 46(12): 1204003.

    Cheng B, Zhang X J, Liu C, et al. Birefringence measurement based on ptychgraphic iteratice engine in planar polarimeter[J]. Chinese Journal of Lasers, 2019, 46(12): 1204003.

[14] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

[15] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.

[16] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9): 889-895.

[17] Geng Y, Tan J B, Guo C, et al. Computational coherent imaging by rotating a cylindrical lens[J]. Optics Express, 2018, 26(17): 22110-22122.

[18] Geng Y, Guo C, Zhou X Y, et al. Enhanced multi-rotation computational coherent imaging based on pre-illumination and simulated annealing compensation[J]. Journal of Optics, 2019, 21(11): 115701.

[19] Zuo Q, Geng Y, Shen C, et al. Accurate angle estimation based on moment for multirotation computation imaging[J]. Applied Optics, 2020, 59(2): 492-499.

[20] Katkovnik V, Shevkunov I, Petrov N V, et al. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments[J]. Optica, 2017, 4(7): 786-794.

[21] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2016, 3(1): 9-14.

[22] Holloway J, Asif M S, Sharma M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 251-265.

[23] Liu Z J, Guo C, Tan J B, et al. Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms[J]. Journal of Optics, 2015, 17(2): 025701.

[24] Migukin A, Katkovnik V, Astola J. Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm[J]. Journal of the Optical Society of America A, 2011, 28(6): 993-1002.

[25] Guo C, Zhao Y, Tan J, et al. Multi-distance phase retrieval with a weighted shrink-wrap constraint[J]. Optics and Lasers in Engineering, 2019, 113: 1-5.

[26] Guo C, Li Q, Wei C, et al. Axial multi-image phase retrieval under tilt illumination[J]. Scientific Reports, 2017, 7(1): 7562.

[27] Rivenson Y, Zhang Y B, Gunaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141.

[28] Shen C, Guo C, Geng Y, et al. Noise-robust pixel-super-resolved multi-image phase retrieval with coherent illumination[J]. Journal of Optics, 2018, 20(11): 115703.

[29] Guo C, Zhao Y X, Tan J B, et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination[J]. Optics Express, 2018, 26(11): 14407-14420.

[30] Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 2018, 121(9): 093902.

[31] Guo C, Liu X M, Kan X C, et al. Lensfree on-chip microscopy based on dual-plane phase retrieval[J]. Optics Express, 2019, 27(24): 35216-35229.

[32] Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Scientific Reports, 2018, 8: 6436.

[33] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3: 1717.

[34] Navruz I, Coskun A F, Wong J, et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array[J]. Lab on a Chip, 2013, 13(20): 4015-4023.

[35] Vandewalle P, Süsstrunk S, Vetterli M. A frequency domain approach to registration of aliased images with application to super-resolution[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006: 071459.

[36] Hardie R. A fast image super-resolution algorithm using an adaptive Wiener filter[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2953-2964.

[37] Guo C, Zhang F L, Zhang X Q, et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm[J]. Journal of Optics, 2020, 22(5): 055703.

[38] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

[39] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 2017, 4(7): 736-745.

[40] Zhang F C, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11): 13592-13606.

[41] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

[42] He X L, Veetil S P, Pan X C, et al. High-speed ptychographic imaging based on multiple-beam illumination[J]. Optics Express, 2018, 26(20): 25869-25879.

[43] Bian Z C, Dong S Y, Zheng G A. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

[44] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

[45] Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Optics Express, 2018, 26(18): 23661-23674.

[46] Guo K K, Zhang Z B, Jiang S W, et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination[J]. Biomedical Optics Express, 2018, 9(1): 260-275.

[47] Wu C, Sudheendran N, Singh M, et al. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging[J]. Journal of Biomedical Optics, 2016, 21(2): 026002.

[48] Lin Y C, Chen H C, Tu H Y, et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 2017, 42(7): 1321-1324.

[49] Wu J G, Conry M, Gu C H, et al. Paired-angle-rotation scanning optical coherence tomography forward-imaging probe[J]. Optics Letters, 2006, 31(9): 1265-1267.

[50] Shen C, Bao X J, Tan J B, et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 2017, 25(14): 16235-16249.

[51] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.

[52] Shen Y, Blondel W. Adjustable frequency filtering and weighted feedback for iterative phase retrieval under noisy conditions[J]. Optics and Lasers in Engineering, 2020, 124: 105808.

郭澄, 耿勇, 翟玉兰, 左琴, 温秀, 刘正君. 变参数计算成像技术研究进展[J]. 激光与光电子学进展, 2020, 57(16): 160001. Cheng Guo, Yong Geng, Yulan Zhai, Qin Zuo, Xiu Wen, Zhengjun Liu. Research Progress on Parameter-Changed Computational Imaging Techniques[J]. Laser & Optoelectronics Progress, 2020, 57(16): 160001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!