光子学报, 2018, 47 (10): 1014003, 网络出版: 2018-12-18   

基于弱谐振腔法布里-珀罗激光器获取中心波长可调谐的带宽可控混沌信号

Generation of Tunable Chaotic Signal with Controllable Bandwidth Based on Weak-resonant-cavity Fabry-Perot Laser Diodes
作者单位
西南大学 物理科学与技术学院, 重庆 400715
摘要
基于两个弱谐振腔法布里-珀罗激光器, 提出并实验研究了一种获取中心波长可调谐、混沌带宽可控的混沌信号产生方案.该方案是通过一个可调谐光纤布喇格光栅反馈弱谐振腔法布里-珀罗激光器(定义为主弱谐振腔法布里-珀罗激光器)输出的混沌光单向注入到另一个弱谐振腔法布里-珀罗激光器 (定义为副弱谐振腔法布里-珀罗激光器)来实现的.研究结果表明:通过改变可调谐光纤布喇格光栅滤波器的中心波长以及反馈回路的反馈强度, 主弱谐振腔法布里-珀罗激光器可输出中心波长在可调谐光纤布喇格光栅滤波器可调谐范围调谐的混沌信号; 把主弱谐振腔法布里-珀罗激光器输出的混沌信号进一步注入到副弱谐振腔法布里-珀罗激光器中, 通过改变注入强度和频率失谐, 可产生中心波长可调谐、带宽可大范围调节的混沌信号.
Abstract
A scheme for generating tunable chaotic signals with controllable bandwidth was proposed and experimentally demonstrated based on two weak-resonant-cavity Fabry-Perot laser diodes, which is realized by that the chaotic signal from a weak-resonant-cavity Fabry-Perot laser diode (named as master weak-resonant-cavity Fabry-Perot laser diode) with tunable fiber Bragg grating optical feedback is unidirectionally injected into another weak-resonant-cavity Fabry-Perot laser diode (named as slave weak-resonant-cavity Fabry-Perot laser diode). The experimental results show that, through adjusting the central wavelength of tunable fiber Bragg grating and feedback strength, master weak-resonant-cavity Fabry-Perot laser diode can output chaotic signal whose central wavelength can be tuned within the tunable range of tunable fiber Bragg grating. Further injecting the chaotic signal from master weak-resonant-cavity Fabry-Perot laser diode into slave weak-resonant-cavity Fabry-Perot laser diode, the bandwidth of the tunable chaotic signal can be adjusted within a large range by varying the injection power and detuning frequency.
参考文献

[1] PECORA L M, CARROLL T L. Synchronizing in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.

[2] VANWIGGEREN G D, ROY R. Communication with chaotic lasers[J]. Science, 1998, 279(5354): 1198-1200.

[3] KUSUMOTO K, OHTSUBO J. 1.5 GHz message transmission based on synchronization of chaos in semiconductor lasers[J]. Optics Letters, 2002, 27(12): 989-991.

[4] XIA Guang-qiong, WU Zheng-mao, WU Jia-gui. Theory and simulation of dual-channel optical chaotic communication system[J]. Optics Express, 2005, 13(9): 3445-3453.

[5] 胡菊菊, 周小勇, 马军山. 非线性光电延时反馈混沌同步复用通信系统研究[J]. 光子学报, 2011, 40(1): 55-60.

    HU Ju-ju, ZHOU Xiao-yong, MA Jun-shan. Multiplexed chaos synchronization communication system with nonlinear delayed optoelectronic feedbacks[J]. Acta Photonica Sinica, 2011, 40(1): 55-60.

[6] ZHAO Qing-chun, WANG Yun-cai, WANG An-bang. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key[J]. Applied Optics, 2009, 48(18): 3515-3520.

[7] WU Jia-gui, WU Zheng-mao, TANG Xi, et al. Experimental demonstration of LD-based bidirectional fiber-optic chaos communication[J]. IEEE Photonics Technology Letters, 2013, 25(6): 587-590.

[8] 刘慧杰, 冯久超, 任斌. 开环全光混沌通信系统中的光纤信道结构[J]. 光子学报, 2012, 41(11): 1267-1273.

    LIU Hui-jie, FENG Jiu-chao, REN Bin. Structure of fiber channel in open-loop all-optical chaotic communication system[J]. Acta Photonica Sinica, 2012, 41(11): 1267-1273.

[9] XUE Chen-peng, JIANG Ning, LV Yun-xin, et al. Security-enhanced chaos communication with time-delay signature suppression and phase encryption[J]. Optics Letters, 2016, 41(16): 3690-3693.

[10] ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

[11] LAVROV R, JACQUOT M, LARGER L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430-1435.

[12] WANGA An-bang, WANG Yun-cai, HE Hu-cheng. Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1633-1635.

[13] WANG An-bang, WANG Yun-cai, WANG Juan-fen. Route to broadband chaos in a chaotic laser diode subject to optical injection[J].Optics Letters, 2009, 34(8): 1144-1146.

[14] HONG Yan-hua, SPENCER P S, SHORE K A. Enhancement of chaotic signal bandwidth in vertical-cavity surface-emitting lasers with optical injection[J]. Journal of the Optical Society of America B, 2012, 29(3): 415-419.

[15] UCHIDA A, HEIL T, LIU Yun, et al. High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection[J]. IEEE Journal of Quantum Electronics, 2003, 39(11): 1462-1467.

[16] SOMEYA H, OOWADA I, OKUMURA H, et al. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection[J]. Optics Express, 2009, 17(22): 19536-19543.

[17] LI Nian-qiang, PAN Wei, XIANG Shui-ying, et al. Loss of time delay signature in broadband cascade-coupled semiconductor lasers[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2187-2190.

[18] HONG Yan-hua, SPENCER P S, SHORE K A. Flat broadband chaos in vertical-cavity surface-emitting lasers subject to chaotic optical injection [J]. IEEE Journal of Quantum Electronics, 2012, 48(12): 1536-1541.

[19] CHEN Jian-jun, WU Zheng-mao,TANG X, et al. Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection[J]. Optics Express, 2015, 23(6): 7173-7183.

[20] 苏斌斌, 陈建军, 吴正茂, 等. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性[J]. 物理学报, 2017, 66(24):244206.

    SU Bin-bin, CHEN Jian-jun, WU Zheng-mao, et al. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection[J]. Acta Physica Sinica, 2017, 66(24): 244206.

[21] DENG Tao, XIA Guang-qiong, WU Zheng-mao. Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection[J]. Nonlinear Dynamics, 2014, 76(1): 399-407.

[22] KE Jun-xiang, YI LI-lin, XIA Guang-qiong, et al. Chaotic optical communications over 100-km fiber transmission at 30 Gb/s bit rate[J]. Optics Letters, 2018, 43(6): 1323-1326.

[23] PAUL J, SIVAPRAKASAM S, SHORE K A. Dual-channel chaotic optical communications using external-cavity semiconductor lasers[J]. Journal of the Optical Society of America B, 2004, 21(3): 514-521.

[24] MATSUURA T, UCHIDA A, YOSHIMORI S. Chaotic wavelength division multiplexing for optical communication[J]. Optics Letters, 2004, 29(23): 2731-2733.

[25] ZHANG Jian-zhong, WANG An-bang, WANG Juan-fen, et al. Wavelength division multiplexing of chaotic secure and fiber-optic communications[J]. Optics Express, 2009, 17(8): 6357-6367.

[26] JIANG Ning, XUE Chen-peng, LV Yun-xin, et al. Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers[J]. Nonlinear Dynamics, 2016, 86(3): 1937-1949.

[27] ARGYRIS A, GRIVAS E, BOGRIS A, et al. Transmission effects in wavelength division multiplexed chaotic optical communication systems[J]. Journal of Lightwave Technology, 2010, 28(21): 3107-3114.

[28] LIN Gong-ru, WANG Hai-lin, LIN Gong-cheng, et al. Comparison on injection-locked Fabry-Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system[J]. Journal of Lightwave Technology, 2009, 27(14): 2779-2785.

[29] LIN Gong-ru, CHENG Tzu-kang, LIN Yi-hung, et al. Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter[J]. IEEE Journal of Quantum Electronics, 2009, 45(9): 1106-1113.

[30] ZHONG Zhu-qiang, LIN Gong-ru, WU Zheng-mao, et al. Tunable broadband chaotic signal synthesis from a WRC-FPLD subject to filtered feedback[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1506-1509.

[31] LIN Fan-yi, CHAO Yuh-kwei, WU Tsung-chieh. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014.

刘林杰, 邓涛, 吴正茂, 田志富, 夏光琼. 基于弱谐振腔法布里-珀罗激光器获取中心波长可调谐的带宽可控混沌信号[J]. 光子学报, 2018, 47(10): 1014003. LIU Lin-jie, DENG Tao, WU Zheng-mao, TIAN Zhi-fu, XIA Guang-qiong. Generation of Tunable Chaotic Signal with Controllable Bandwidth Based on Weak-resonant-cavity Fabry-Perot Laser Diodes[J]. ACTA PHOTONICA SINICA, 2018, 47(10): 1014003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!