光子学报, 2015, 44 (3): 0311003, 网络出版: 2015-04-14   

确定性矩阵可分离压缩成像

Separable Compressive Imaging with Deterministic Matrices
作者单位
安徽大学 计算智能与信号处理教育部重点实验室, 安徽省现代成像与显示技术重点实验室, 合肥 230039
摘要
针对可分离压缩传感使用的可分离随机正交矩阵在处理大尺度图像等高维信号感知时难度太大或成本过高的问题, 引入确定性测量矩阵, 提出确定性矩阵可分离压缩传感, 可将如托普利兹矩阵及循环矩阵等具有确定性结构的矩阵作为可分离压缩传感的左、右可分离矩阵.该方案可以降低独立元素的数目, 从而显著降低前端物理实现的难度与成本.数值模拟实验分别评估了该方法在不同采样率及不同图像尺寸下的压缩重建性能, 结果表明该方法在独立元素非常少的情形下得到与原随机正交矩阵相近的重建质量, 证明了其可行性.
Abstract
Aiming at the heavy difficulty or high cost for the random orthogonal matrix which used in separable compressive sensing for high-dimensional signals sensing, such as large-scale image compressive reconstruction, deterministic measurement matrices was introduced, and a separable compressive sensing using deterministic matrices was proposed, matrix with deterministic structure, such as Toeplitz or Circulant matrix, could be used as a left/right separable matrix in separable compressed sensing. The proposed scheme can significantly reduce the number of independent elements, thus significantly reduce the difficulty and the cost of physical implementation. Numerical simulations evaluated comparisons of reconstruction performance of the proposed method with different downsampling rates and different image sizes. The results indicate that the proposed method can achieve similar reconstruction quality with far fewer independent elements as random orthogonal matrix′s, which demonstrates the feasibility of the proposed method.
参考文献

[1] ROMBERG J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.

[2] NEIFELD M A, KE J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22): 5293-5303.

[3] 张成, 程鸿, 张芬, 等. 物理可实现的相位编码压缩成像[J]. 电子学报, 2013, 41(5): 982-986.

    ZHANG Cheng, CHENG Hong, ZHANG Fen, et al. Physical realizable phase encoding compressed imaging[J]. Acta Electronica Sinica, 2013, 41(5): 982-986.

[4] 张成, 程鸿, 张芬, 等. 单次曝光频域振幅编码压缩成像[J]. 电子学报, 2014, 42(7): 1262-1267.

    ZHANG Cheng, CHENG Hong, ZHANG Fen, et al. Single-exposure frequency-domain amplitude encoding compressive imaging[J]. Acta Electronica Sinica, 2014, 42(7): 1262-1267.

[5] 张成, 杨海蓉, 韦穗. 确定性相位掩膜可压缩双透镜成像[J]. 光子学报, 2011, 40(6): 949-954.

    ZHANG Cheng, YANG Hai-Rong, WEI Sui. Compressive double lens imaging using deterministic phase mask[J]. Acta Photonica Sinica, 2011, 40(6): 949-954.

[6] 张成, 杨海蓉, 韦穗. 托普利兹-循环块相位掩膜矩阵压缩成像[J]. 光子学报, 2011, 40(9): 1322-1327.

    ZHANG Cheng, YANG Hai-Rong, WEI Sui. Compressive imaging using toeplitz-circulant-block phase mask matrices[J]. Acta Photonica Sinica, 2011, 40(9): 1322-1327.

[7] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[8] CANDS E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[9] WILLETT R M, MARCIA R F, NICHOLS J M. Compressed sensing for practical optical imaging systems: a tutorial[J]. Optical Engineering, 2011, 50(7): 072601.

[10] MARIM M, ANGELINI E, OLIVO-MARIN J C, et al. Off-axis compressed holographic microscopy in low-light conditions[J]. Optics Letters, 2011, 36(1): 79-81.

[11] SUI X, CHEN Q, GU G, et al. Infrared super-resolution imaging based on compressed sensing[J]. Infrared Physics & Technology, 2014, 63: 119-124.

[12] DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

[13] ROMBERG J. Compressive sensing by random convolution[J]. SIAM Journal on Imaging Sciences, 2009, 2(4): 1098-1128.

[14] WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.

[15] RIVENSON Y, STERN A. Compressed imaging with a separable sensing operator[J]. Signal Processing Letters, IEEE, 2009, 16(6): 449-452.

[16] RIVENSON Y, STERN A. Practical compressive sensing of large images[C]. Digital Signal Processing, 2009 16th International Conference on. IEEE, 2009: 1-8.

[17] AUGUST Y, VACHMAN C, RIVENSON Y, et al. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54.

[18] WANG W, LU D, WANG Y, et al. Intelligent throat polyp detection with separable compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-6.

[19] SHISHKIN S L, WANG H, HAGEN G S. Total variation minimization with separable sensing operator[M]. Image and Signal Processing. Springer Berlin Heidelberg, 2010: 86-93.

[20] WRIGHT S J, NOWAK R D, FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479-2493.

[21] ROBUCCI R, GRAY J D, CHIU L K, et al. Compressive sensing on a CMOS separable-transform image sensor[J]. Proceedings of the IEEE, 2010, 98(6): 1089-1101.

[22] HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.

[23] GUO H T. Rice wavelet toolbox[CP/OL]. http: //dsp.rice.edu/software/ rice-wavelet-toolbox, 2013-01.

[24] VAN DEN BERG E, FRIEDLANDER M P. Probing the Pareto frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2008, 31(2): 890-912.

张成, 程鸿, 张芬, 韦穗. 确定性矩阵可分离压缩成像[J]. 光子学报, 2015, 44(3): 0311003. ZHANG Cheng, CHENG Hong, ZHANG Fen, WEI Sui. Separable Compressive Imaging with Deterministic Matrices[J]. ACTA PHOTONICA SINICA, 2015, 44(3): 0311003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!