人工晶体学报, 2020, 49 (10): 1825, 网络出版: 2021-01-09   

Eu3+,Tb3+共掺杂的NaGd(WO4)2颜色可调荧光粉的水热合成及发光性质研究

Hydrothermal Synthesis and Luminescent Properties of Eu3+,Tb3+ Co-Doped NaGd(WO4)2 Phosphors with Tunable Color
作者单位
河北大学化学与环境科学学院,保定 071002
摘要
在不添加任何模板剂的情况下,采用温和水热法,制备了一系列NaGd0.96-x(WO4)2∶0.04Tb3+,xEu3+(x=0, 0.005, 0.01,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18)荧光粉。采用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)以及荧光分光光度计分别对所得样品的物相结构、形貌粒度及发光性能进行分析表征。结果表明:所合成的样品为NaGd(WO4)2的纯相,属四方晶系白钨矿结构。其形貌为规整的四方盘形,尺寸均一、分散性良好。系列样品均能被近紫外光有效激发,通过改变NaGd(WO4)2中Eu3+/Tb3+的掺杂浓度,实现了对荧光粉发光颜色由绿色到红色的全色调控。
Abstract
A series of NaGd0.96-x(WO4)2∶0.04Tb3+,xEu3+(x=0, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18) phosphors were prepared by a relatively mild hydrothermal method without the addition of any template. The phase structure, morphology and particle size, and luminescence properties of the samples were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometry, respectively. The results show that the as-synthesized samples are pure NaGd(WO4)2 with tetragonal scheelite structure, and possess defined square-plate morphology, uniform size distribution and good dispersity. All the samples can be excited effectively by near-ultraviolet light, and the emitting color can be tuned from green to red color by changing the doping concentration of Eu3+ and Tb3+.
参考文献

[1] 洪广言.稀土发光材料的研究进展[J].人工晶体学报,2015,44(10):2641-2651.

[2] Zhao J, Guo C, Li T, et al. Synthesis, electronic structure and photoluminescence properties of Ba2BiV3O11∶Eu3+ red phosphor[J]. Dyes and Pigments, 2016, 132: 159-166.

[3] Ren Q, Lin F, Wu X, et al. Synthesis and luminescent properties of KGd(MoO4)2∶Sm3+ red phosphor for white light emitting diodes[J]. Materials Research Bulletin, 2017, 90: 66-72.

[4] Xu W, Hu Y W, Zheng L J, et al. Enhanced NIR-NIR luminescence from CaWO4∶Nd3+/Yb3+ phosphors by Li+ codoping for thermometry and optical heating[J]. Journal of Luminescence, 2019, 208: 415-423.

[5] Zhai Y Q, Zhao X, Sun Q L, et al. Template-free hydrothermal synthesis and luminescence properties of NaGd(WO4)2∶Eu3+ red phosphors with controlled morphology[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(6): 5034-5041.

[6] Zheng H, Chen B J, Yu H Q, et al. Influence of microwave hydrothermal reaction factor on the morphology of NaY(MoO4)2 nano-/micro-structures and luminescence properties of NaY(MoO4)2:Tb3+[J]. Rsc Advances, 2015, 5(69): 56337-56347.

[7] Wu H Y, Sun Z Y, Gan S C, et al. Effects of alkali metal as charge compensator on the luminescence properties of ZnWO4∶Eu3+ phosphors synthesized by solid-state reaction[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368: 258-262.

[8] Zhang Q, Meng Q Y, Sun W J. The concentration dependence of luminescent properties for Eu3+ doped CaWO4 micron spherical phosphors[J]. Optical Materials, 2013, 35(5): 915-922.

[9] Pereira P F S, de Moura A P, Nogueira I C, et al. Study of the annealing temperature effect on the structural and luminescent properties of SrWO4:Eu3+ phosphors prepared by a non-hydrolytic sol-gel process[J]. Journal of Alloys and Compounds, 2012, 526: 11-21.

[10] Zhao M Z, Liu Y, Ma S Y, et al. Investigation of energy transfer mechanism and luminescence properties in Eu3+ and Sm3+ co-doped ZnWO4 phosphors[J]. Journal of Luminescence, 2018, 202: 57-64.

[11] Zhai Y Q, Sun Q L, Yang S, et al. Morphology-controlled synthesis and luminescence properties of green-emitting NaGd(WO4)2∶Tb3+ phosphors excited by n-UV excitation[J]. Journal of Alloys and Compounds, 2019, 781: 415-424.

[12] Zhou Y, Yan B, He X H. Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE(WO4)2∶Ln3+ (RE=Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm)[J]. Journal of Materials Chemistry C, 2014, 2(5): 848-855.

[13] Liu X L, Hou W H, Yang X Y, et al. Morphology controllable synthesis of NaLa(WO4)2: the morphology dependent photoluminescent properties and single-phased white light emission of NaLa(WO4)2∶Eu3+/Tb3+/Tm3+[J]. CrystEngComm,2014,16: 1268-127.

[14] Shi S K, Gao J, Zhou J. Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor[J].Optical Materials,2008,30(10): 1616-1620.

[15] Mahalingam V, Thirumalai J. Facile hydrothermal synthesis and pulsed laser deposition of Ca0.5Y1-x(WO4)2∶xEu3+ phosphors: investigations on the luminescence, Judd-Ofelt analysis and charge compensation mechanism[J]. New Journal of Chemistry, 2017, 41: 493-502.

[16] Jena P, Gupta S K, Verma N K, et al. Energy transfer dynamics and time resolved photoluminescence in BaWO4∶Eu3+ nanophosphors synthesized by mechanical activation[J]. New Journal of Chemistry, 2017, 41: 8947-8958.

[17] Liu X H, Xiang W D, Chen F M, et al. Synthesis and photoluminescence of Tb3+ activated NaY(WO4)2 phosphors[J]. Materials Research Bulletin, 2012, 47(11): 3417-3421.

[18] 翟永清,孙庆琳,刘 昌,等.近紫外激发NaGd(WO4)2∶Ln3+(Ln=Tb,Dy,Sm,Eu)荧光粉的微波水热合成及发光性能[J].硅酸盐学报,2018,46(10):1458-1468.

[19] Geng D L, Li G G, Shang M M, et al. Nanocrystalline CaYAlO4∶Tb3+/Eu3+ as promising phosphors for full-color field emission displays[J]. Dalton Transactions, 2012, 41: 3078-3086.

翟永清, 姜龙太, 邓德芮, 汪威澳, 陈湘匀, 吴晗. Eu3+,Tb3+共掺杂的NaGd(WO4)2颜色可调荧光粉的水热合成及发光性质研究[J]. 人工晶体学报, 2020, 49(10): 1825. ZHAI Yongqing, JIANG Longtai, DENG Derui, WANG Weiao, CHEN Xiangyun, WU Han. Hydrothermal Synthesis and Luminescent Properties of Eu3+,Tb3+ Co-Doped NaGd(WO4)2 Phosphors with Tunable Color[J]. Journal of Synthetic Crystals, 2020, 49(10): 1825.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!