大气与环境光学学报, 2019, 14 (5): 345, 网络出版: 2019-10-14  

铝合金中元素Cr和Cu的双脉冲激光诱导 击穿光谱检测

Trace Cr and Cu Analysis in Aluminum Alloy by Double Pulse Laser-Induced Breakdown Spectroscopy
作者单位
1 浙江省光信息检测与显示技术研究重点实验室 ,浙江师范大学,浙江 金华 321004
2 玉林师范学院物理科学与工程技术学院,广西 玉林 537000
摘要
采用共线双脉冲激光诱导击穿光谱(Dual pulse laser induced breakdown spectroscopy, DP-LIBS)技术分析铝合金中微量元素含量,详细研究了共线双脉冲光谱信号强度与 双脉冲间时间延迟的关系,最佳延时为8~9 μs。在该延时条件下,双脉冲光谱信号强度比单脉冲光谱 信号强度增强了10倍以上。分别采用双脉冲激光诱导击穿光谱和单脉冲激光诱导击穿光谱(Single-pulse laser induced breakdown spectroscopy, SP-LIBS)技术,得到了以Cu I 324.75 nm, Cr I 425.43 nm 谱线为分析线 的定标曲线。与采用单脉冲激光诱导击穿光谱技术相比,铝合金中 Cu和 Cr的检测极限分别由单脉冲时的169.5 和94.5 μg/g降低至双脉冲时的21.46 和4.26 μg/g。
Abstract
A collinear dual pulse laser induced breakdown spectroscopy (DP-LIBS) has been used for trace element analysis in aluminum alloy. The dependence of signal intensity on the inter-pulse delay time has been carefully investigated, which gives an optimized delay time of about 8~9 μs. For the two selected analytical lines Cu I 324.75 nm and Cr I 425.43 nm, more than 10 folds enhancement of line intensities have been obtained compared to that of single-pulse laser induced breakdown spectroscopy(SP-LIBS). Calibration curves for quantitative measurement of Cu and Cr were derived using both SP-LIBS and DP-LIBS techniques. The limit of detection (LOD) of elements Cu and Cr are found to be 21.46 and 4.26 μg/g respectively with DP-LIBS, while the LOD of elements Cu and Cr are 169.5 and 94.5 μg/g with SP-LIBS.
参考文献

[1] 王海舟. 冶金分析前沿[M] . 北京: 科学出版社, 2004.

    Wang Haizhou. Frontier of Metallurgical Analysis[M]. Beijing: Science Press, 2004(in Chinese).

[2] 孙兰香. 基于激光诱导击穿光谱的多元合金成分定量分析方法与实验研究[D]. 沈阳:中国科学院沈阳自动化研究所博士论文, 2009.

    Sun Lanxiang. Method and experimental research on quantifying multielement alloys based on laser-induced breakdown spectroscopy[D]. Shenyang: Doctorial Dissertation of Shenyang Institute of Automation, Chinese Academy of Sciences, 2009(in Chinese).

[3] Pasquini C, Cortez J, Silva L M C, et al. Laser induced breakdown spectroscopy[J]. Journal of the Brazilian Chemical Society, 2007, 18(3): 463-512.

[4] Lee W B, Wu J Y, Lee Y I, et al. Recent applications of laser-induced breakdown spectrometry: a review of material approaches[J]. Applied Spectroscopy Reviews, 2004, 39(1): 27-97.

[5] Freedman A, Iannarilli Jr. F J, Wormhoudt J C. Aluminum alloy analysis using microchip laser induced breakdown spectroscopy[J]. Spectrochimica Acta B, 2005, 60(8): 1076-1082.

[6] Winefordner J D, Gornushkin I B, Correll T, et al. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J]. Journal of Analytical Atomic Spectrometry 2004, 19(9): 1061-1083.

[7] Miziolek A, Palleschi V, Scbechtcr I. Laser-Induced Breakdown Spectroscopy (LIBS)[M]. Cambridge: Cambridge University Press, 2006.

[8] 张 巧,胡振华,丁 蕾,等. 钾元素单脉冲和双脉冲激光诱导击穿光谱研究[J].原子与分子物理学报, 2013, 30(6): 945-953.

    ZhangQiao, Hu Zhenhua, Ding Lei et al. Study on K single pulse-and double pulse-Laser induced breakdown spectroscopy[J]. Journal of Atomic and Molecular Physics, 2013, 30(6): 945-953(in Chinese).

[9] 林兆祥,吴金泉,龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究[J].物理学报, 2006, 55(11): 5892-5898.

    Lin Zhaoxiang, Wu Jinquan, Gong Shunsheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses[J]. Acta Physica Sinica, 2006, 55(11): 5892-5898(in Chinese).

[10] Rai V N,Yueh F Y, Singh J P. Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid[J]. Appl Optics, 2008, 47(31): G21-G29.

[11] Song Chao, Gao Xun, Shao Yan. Pre-ablation laser parameter effects on the spectral enhancement of 1064 nm/1064 nm dual-pulse laser induced breakdown spectroscopy[J]. Optik, 2016, 127: 3979-3983.

[12] Mohamed W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Optics & Laser Technology, 2008, 40(1): 30-38.

[13] Uebbing J, Brust J, Sdorra W, et al. Reheating of a laser-produced plasma by a second pulse laser[J]. Applied Spectroscopy, 1991, 45(9): 1419-1423.

[14] Scaffidi J,Pearman W, Carter J C, et al. Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy[J]. Applied Optics, 2004, 43(35): 6492-6499.

[15] Stepputat M, Noll R. On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry[J]. Applied Optics, 2003, 42(30): 6210-6220.

[16] Babushok V I,DeLucia Jr. F C, Gottfried J L, et al. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement[J]. Spectrochimica Acta B, 2006, 61(9): 999-1014.

杨丽超, 杨瑞兆, 苏雪娇, 於有利, 周卫东. 铝合金中元素Cr和Cu的双脉冲激光诱导 击穿光谱检测[J]. 大气与环境光学学报, 2019, 14(5): 345. YANGLichao, YANG Ruizhao, SU Xuejiao, YU Youli, ZHOU Weidong. Trace Cr and Cu Analysis in Aluminum Alloy by Double Pulse Laser-Induced Breakdown Spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 345.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!