光通信技术, 2020, 44 (3): 31, 网络出版: 2020-04-05  

基于光纤技术的管道油气泄漏共轭梯度ESN检测

Conjugate gradient ESN detection of oil and gas leakage in pipeline based on optical fiber technology
作者单位
中国石油工程建设有限公司 北京设计分公司, 北京 100085
摘要
在管道油气泄漏检测中最主要的难题是管道距离过长的问题, 利用传统检测模式效果不好。提出一种基于光纤技术的管道油气泄漏共轭梯度回声状态网络(ESN)检测方法。首先, 利用光纤探测技术对长距离油气管道的实时数据进行监测和采集, 并利用数据串联方式, 结合粗糙集算法对采集的泄露数据采样无标记数据的维度压缩方式, 实现数据的降维和简化;其次, 选取ESN对降维后的油气管道泄露数据进行分析和处理, 并基于正则化方式对ESN的权重进行初步的优化, 在此基础上利用Hessian矩阵的半正定性, 对初步的权重结果进行深入的学习优化, 实现ESN对油气管道泄露数据的识别能力;最后, 通过实测的数据仿真验证, 提出的油气管道的泄露监测模型具有更高的识别精度和计算效率。
Abstract
The main problem oil and gas leakage in pipeline detection is that the pipeline distance is too long, and the effect of traditional detection mode is not good. A detection method of oil and gas leakage in pipeline using conjugate gradient echo state network(ESN) based on optical fiber technology is proposed. Firstly, the real-time data of long-distance oil and gas pipeline is monitored and collected by optical fiber detection technology, and the dimension compression method of unmarked data is used to reduce the dimension and simplify the data by combining the data series method and rough set algorithm. Secondly, ESN is selected to analyze and process the dimension reduced oil and gas pipeline leakage data. The weight of ESN is optimized preliminarily, and then the preliminary weight results are further optimized by using the semi positive qualitative of Hessian matrix to realize the recognition ability of ESN to the leakage data of oil and gas pipelines which is based on regularization. Finally, through the simulation of the measured data, the proposed leakage monitoring model of oil and gas pipeline has higher recognition accuracy and calculation efficiency.
参考文献

[1] DARREN C. Fourier-Mellin Transforms for Circular Domains[J]. Computational Methods and Function Theory, 2015, 15(4): 655-687.

[2] 严凤, 许海梅. 基于神经网络的配电线路综合故障定位方法[J]. 电力系统及其自动化学报, 2015, 27(5): 86-92.

[3] 高莹莹, 朱维彬. 深层神经网络中间层可见化建模[J]. 自动化学报, 2015, 41(9): 1627-1635.

[4] SHI B, LIAN Q, CHEN S. Compressed sensing magnetic resonance imaging based on dictionary updating and block-matching and three-dimensional filtering regulari-sation[J]. IET Image Processing, 2016, 10(1): 68-79.

[5] PRUNGSINCHAI S, KHELIFI F, BOURIDANE A. Proceedings of 2013 Fourth In-ternational Conference on Emerging Security Technologies (EST)June 15, 2013[C]. Cambridge: IEEE, 2013.

[6] HONG X, CHEN S, HARRIS C J. Single-Carrier Frequency Domain Equalization for Hammerstein Communication Systems Using Complex-Valued Neural Networks[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4467-4478.

[7] BAG A K, TUDU B, BANDYOPADHYAY R. Dealing With Redundant Features and Inconsistent Training Data in Electronic Nose: A Rough Set Based Approach[J]. IEEE Sensors Journal, 2014, 14(3): 758-767.

[8] YADAV P, KUMAR R, PANDA S K. Optimal Thrust Allocation for Semisubmersible Oil Rig Platforms Using Improved Harmony Search Algorithm[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 526-539.

[9] 滕书华, 鲁敏, 杨阿锋. 基于一般二元关系的粗糙集加权不确定性度量[J]. 计算机学报, 2014, 37(3): 649-657.

[10] 杨雅辉, 黄海珍, 沈晴霓. 基于增量式GHSOM神经网络模型的入侵检测研究[J]. 计算机学报, 2014, 37(5): 1216-1221.

[11] 张梁梁, 冯径, 胡谷雨. 基于压缩感知的社团结构深度学习方法[J]. 计算机工程, 2014, 40(9): 190-197.

[12] MCCAGUE C. Novel sensor design using photonic crystal fibres for monitoring the onset of corrosion in reinforced concrete structures[J]. Journal of Lightwave Technology, 2014, 32(5): 891-896.

[13] TORRES-ARREDONDO M A. Data-driven multivariate algorithms for damage detection and identification[J]. Structural Health Monitoring, 2014, 13(1): 19-32.

[14] MUJICA LE. A structural damage detection indicator based on principal component analysis and statistical hypothesis testing[J]. Smart Materials & Structures, 2014, 23(2): 25014-25025.

[15] XU J W, WU H J, XIAO S K. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions[J]. Photonic Sensors, 2014, 4(4): 354-358.

田飞博. 基于光纤技术的管道油气泄漏共轭梯度ESN检测[J]. 光通信技术, 2020, 44(3): 31. TIAN Feibo. Conjugate gradient ESN detection of oil and gas leakage in pipeline based on optical fiber technology[J]. Optical Communication Technology, 2020, 44(3): 31.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!