激光与光电子学进展, 2018, 55 (11): 111101, 网络出版: 2019-08-14   

非冗余孔径掩模技术在双星探测中的实验研究 下载: 929次

Experimental Investigation of Non-Redundant Aperture Masking Technique in Binary-Star Detection
王彦强 1,2,3吴桢 1,2,*
作者单位
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
引用该论文

王彦强, 吴桢. 非冗余孔径掩模技术在双星探测中的实验研究[J]. 激光与光电子学进展, 2018, 55(11): 111101.

Yanqiang Wang, Zhen Wu. Experimental Investigation of Non-Redundant Aperture Masking Technique in Binary-Star Detection[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111101.

参考文献

[1] Haniff C A, Mackay C D, Titterington D J, et al. The first images from optical aperture synthesis[J]. Nature, 1987, 328: 694-696.

[2] Buscher D F, Haniff C A, Baldwin J E, et al. Detection of a bright feature on the surface of Betelgeuse[J]. Monthly Notices of the Royal Astronomical Society, 1990, 245: 7-11.

[3] Wilson R W, Baldwin J E, Buscher D F, et al. High-resolution imaging of Betelgeuse and Mira[J]. Monthly Notices of the Royal Astronomical Society, 1992, 257(3): 369-376.

[4] Tuthill P G, Haniff C A, Baldwin J E. Long-term diameter variations in the long-period variable o Ceti[J]. Monthly Notices of the Royal Astronomical Society, 1995, 277(4): 1541-1546.

[5] Wilson R W, Dhillon V S, Haniff C A. The changing face of Betelgeuse[J]. Monthly Notices of the Royal Astronomical Society, 1997, 291(4): 819-826.

[6] Tuthill P G, Haniff C A, Baldwin J E. Surface imaging of long-period variable stars[J]. Monthly Notices of the Royal Astronomical Society, 2002, 306(2): 353-360.

[7] Tuthill P G, Monnier J D, Danchi W C, et al. Michelson interferometry with the keck I telescope[J]. Publications of the Astronomical Society of the Pacific, 2000, 112(770): 555-565.

[8] Monnier J D, Tuthill P G, Danchi W C, et al. The keck aperture-masking experiment: near-infrared sizes of dusty Wolf-Rayet stars[J]. The Astrophysical Journal, 2007, 655(2): 1033-1045.

[9] Woodruff H C, Tuthill P G, Monnier J D, et al. The keck aperture masking experiment: multiwavelength observations of six mira variables[J]. The Astrophysical Journal, 2008, 673(1): 418-433.

[10] Woodruff H C, Ireland M J, Tuthill P G, et al. The keck aperture masking experiment: spectro-interferometry of three Mira Variables from 1.1 to 3.8 μm[J]. Astrophysical Journal, 2009, 691(2): 1328-1336.

[11] Blasius T D, Monnier J D, Tuthill P G, et al. The keck aperture masking experiment: dust-enshrouded red giants[J]. Monthly Notices of the Royal Astronomical Society, 2012, 426(4): 2652-2667.

[12] Pravdo S H, Shaklan S B, Wiktorowicz S J, et al. Masses of astrometrically discovered and imaged binaries: G78-28AB and GJ 231.1BC[J]. The Astrophysical Journal, 2006, 649(1): 389-398.

[13] Tuthill P, Lloyd J, Ireland M, et al. Sparse-aperture adaptive optics[J]. Proceedings of SPIE, 2006, 6272: 62723A.

[14] Lacour S, Tuthill P, Ireland M, et al. Sparse aperture masking on Paranal[J]. Messenger, 2011, 146: 18-23.

[15] Lacour S, Tuthill P, Amico P, et al. Sparse aperture masking at the VLT[J]. Astronomy & Astrophysics, 2011, 532: A72.

[16] Lloyd J P, Martinache F, Ireland M J, et al. Direct detection of the brown dwarf GJ 802B with adaptive optics masking interferometry[J]. The Astrophysical Journal, 2006, 650(2): L131-L134.

[17] Martinache F, Lloyd J P, Ireland M J, et al. Precision masses of the low-mass binary system GJ 623[J]. The Astrophysical Journal, 2007, 661(1): 496-501.

[18] Ireland M J, Kraus A, Martinache F, et al. Dynamical mass of GJ 802B: a brown dwarf in a triple system[J]. The Astrophysical Journal, 2008, 678(1): 463-471.

[19] Martinache F, Rojas-Ayala B, Ireland M J, et al. Visual orbit of the low-mass binary gj 164 ab[J]. The Astrophysical Journal, 2009, 695(2): 1183-1190.

[20] Kraus A L, Ireland M J, Martinache F, et al. Mapping the shores of the brown dwarf desert. I. upper scorpius[J]. The Astrophysical Journal, 2008, 679(1): 762-782.

[21] Kraus A L, Ireland M J, Martinache F, et al. Mapping the shores of the brown dwarf desert. ii. multiple star formation in taurus-auriga[J]. The Astrophysical Journal, 2011, 731(1): 8.

[22] Evans T M, Ireland M J, Kraus A L, et al. Mapping the shores of the brown dwarf desert. iii. young moving groups[J]. The Astrophysical Journal, 2011, 744(2): 120.

[23] Ireland M J, Kraus A L. The disk around CoKu tauri/4: circumbinary, not transitional[J]. The Astrophysical Journal, 2008, 678(1): L59-L62.

[24] Huélamo N, Lacour S, Tuthill P, et al. A companion candidate in the gap of the T Chamaeleontis transitional disk[J]. Astronomy & Astrophysics, 2011, 528: L7.

[25] Cheetham A, Huélamo N, Lacour S, et al. Near-IR imaging of T Cha: evidence for scattered-light disc structures at Solar system scales[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(1): L1-L5.

[26] Biller B, Lacour S, Juhász A, et al. A likely close-in low-mass stellar companion to the transitional disk star hd 142527[J]. The Astrophysical Journal, 2012, 753(2): L38.

[27] Kraus A L, Ireland M J. LkCa 15: a young exoplanet caught at formation[J]. Astrophysical Journal, 2012, 745(1): 5-16.

[28] Sallum S, Follette K B, Eisner J A, et al. Accreting protoplanets in the LkCa 15 transition disk[J]. Nature, 2015, 527(7578): 342-344.

[29] Sivaramakrishnan A, Tuthill P, Martinache F, et al. Planetary system, star formation, and black hole science with non-redundant masking on space telescopes[J]. arXiv, 2009, 0904: 1360.

[30] Ford K E S, McKernan B, Sivaramakrishnan A, et al. . Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope[J]. The Astrophysical Journal, 2014, 783(2): 73-89.

[31] 徐美芳, 丁俊文, 胡鹏, 等. 多孔掩模对统计独立散斑图像形成的影响分析[J]. 中国激光, 2017, 44(1): 0101005.

    Xu M F, Ding J W, Hu P, et al. Affects of mutli-apertures mask on formation of statistically independent speckle image[J]. Chinese Journal of Lasers, 2017, 44(1): 0101005.

[32] 王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学精密工程, 2002, 10(5): 434-442.

    Wang H T, Zhou B F. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442.

[33] 陈欣扬. Fizeau型天文光学综合孔径望远镜的若干关键技术研究[D]. 上海: 中国科学院上海天文台, 2007.

    Chen XY. Some key techniques of Fizeau-type optical aperture synthesis telescope[D]. Shanghai:Shanghai Astronomical Observatory,Chinese Academy of Sciences, 2007.

[34] 吴泉英. 稀疏孔径光学系统成像研究[D]. 苏州: 苏州大学, 2006: 18- 19.

    Wu QY. Study on the sparse aperture optical systems[D]. Suzhou: Soochow University, 2006: 18- 19.

[35] 钱霖, 吴泉英, 吴峰, 等. 复合三子镜的成像研究[J]. 光学学报, 2005, 25(8): 1030-1035.

    Qian L, Wu Q Y, Wu F, et al. Study on imaging of dual three sub-apertures design[J]. Acta Optica Sinica, 2005, 25(8): 1030-1035.

[36] 梁士通. 合成孔径光学成像系统研究[D]. 西安:中国科学院西安光学精密机械研究所, 2011.

    Liang ST. Study on the imaging theory of the optical synthetic aperturing imaging systems[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences, 2011.

[37] 易红伟. 光学稀疏孔径成像系统关键问题研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2007.

    Yi HW. Study on the key issues of the optical sparse-aperture imaging systems[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences, 2007.

[38] 孙长胜, 朱永田, 胡中文, 等. 基于改进空间频率域采样的天文光干涉望远镜阵列优化[J]. 应用光学, 2017, 38(4): 555-561.

    Sun C S, Zhu Y T, Hu Z W, et al. Astronomy optical interferometric telescope array optimization based on modified UV sampling method[J]. Journal of Applied Optics, 2017, 38(4): 555-561.

[39] 柳军, 姜慧, 王军, 等. 环面形稀疏孔径的研究[J]. 激光与光电子学进展, 2012, 49(11): 111101.

    Liu J, Jiang H, Wang J, et al. Study on the torus sparse aperture[J]. Laser & Optoelectronics Progress, 2012, 49(11): 111101.

[40] 陈旗海, 王治乐, 张伟. 光学合成孔径成像系统子孔径像差研究[J]. 应用光学, 2006, 27(2): 112-115.

    Chen Q H, Wang Z L, Zhang W. Study on subaperture aberration of optical synthetic aperture imaging system[J]. Journal of Applied Optics, 2006, 27(2): 112-115.

[41] 丁驰竹, 冯华君, 徐之海, 等. 光学稀疏孔径成像系统子孔径位相误差研究[J]. 光子学报, 2009, 38(5): 1158-1162.

    Ding C Z, Feng H J, Xu Z H, et al. Co-phasing error study of the sub-apertures' for optical sparse aperture system[J]. Acta Photonica Sinica, 2009, 38(5): 1158-1162.

[42] 胡孟孟, 陈宝华, 姜慧, 等. 三子镜稀疏孔径双反系统子镜装调误差对成像质量的影响[J]. 激光与光电子学进展, 2015, 52(1): 011101.

    Hu M M, Chen B H, Jiang H, et al. Influence of alignment error of the three sub-mirrors sparse aperture two-mirror system on imaging quality[J]. Laser & Optoelectronics Progress, 2015, 52(1): 011101.

[43] 郑彬, 陆培芬, 陈永和, 等. 拼接式反射镜共相误差检测[J]. 光学学报, 2017, 37(11): 1112002.

    Zheng B, Lu P F, Chen Y H, et al. Co-phase error detection of segmented mirrors[J]. Acta Optica Sinica, 2017, 37(11): 1112002.

[44] 范君柳, 吴泉英, 李勋武, 等. 基于相位差法的稀疏孔径基准子镜的选择[J]. 光学学报, 2016, 36(5): 0511001.

    Fan J L, Wu Q Y, Li X W, et al. Selection of benchmark sub-mirror of sparse aperture based on phase diversity[J]. Acta Optica Sinica, 2016, 36(5): 0511001.

[45] 李勋武, 范君柳, 胡孟孟, 等. 应用于稀疏孔径的滤波切趾相位差异法的研究[J]. 激光与光电子学进展, 2015, 52(9): 092201.

    Li X W, Fan J L, Hu M M, et al. Study of filter-apodization phase diversity applied in sparse aperture[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092201.

[46] Zhu X, Wu F, Wu Q, et al. Image restoration for sparse aperture systems based on wavelet-Wiener algorithm[J]. Proceedings of SPIE, 2009, 7513: 75131B.

[47] 吴俊, 吴桢. 合成孔径光学系统的成像特性和图像复原[J]. 应用光学, 2010, 31(4): 567-573.

    Wu J, Wu Z. Imaging characteristic and image reconstruction of synthetic aperture optical system[J]. Journal of Applied Optics, 2010, 31(4): 567-573.

[48] 张仙玲. 天文光干涉与光学综合孔径图像重构技术研究[D]. 南京: 南京理工大学, 2004.

    Zhang XL. Study on the astronomical optical interferometry and optical aperture synthetic image reconstruction[D]. Nanjing: Nanjing University of Technology, 2004

[49] 姜艳超. 稀疏孔径光学成像系统图像恢复算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Jiang YC. Image restoration in optical sparse aperture systems[D]. Harbin: Harbin Institute of Technology, 2011.

王彦强, 吴桢. 非冗余孔径掩模技术在双星探测中的实验研究[J]. 激光与光电子学进展, 2018, 55(11): 111101. Yanqiang Wang, Zhen Wu. Experimental Investigation of Non-Redundant Aperture Masking Technique in Binary-Star Detection[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111101.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!