中国激光, 2021, 48 (6): 0602110, 网络出版: 2021-03-06   

基体取向对激光熔覆修复区域杂晶形成的影响 下载: 895次

Effect of Substrate Orientation on Formation of Heterocrystals in Laser Cladding Zone
荣鹏 1,*郭嘉琛 2,*
作者单位
1 成都飞机工业(集团)有限责任公司, 四川 成都 610000
2 西北工业大学理学院, 陕西 西安 710072
引用该论文

荣鹏, 郭嘉琛. 基体取向对激光熔覆修复区域杂晶形成的影响[J]. 中国激光, 2021, 48(6): 0602110.

Peng Rong, Jiachen Guo. Effect of Substrate Orientation on Formation of Heterocrystals in Laser Cladding Zone[J]. Chinese Journal of Lasers, 2021, 48(6): 0602110.

参考文献

[1] BöllinghausT, HeroldH. Hot cracking phenomena in welds[M]. Berlin/Heidelberg: Springer-Verlag, 2005.

[2] Reed RC. The Superalloys: fundamentals and applications[M]. Cambridge: Cambridge university press, 2008.

[3] 陈炳贻. 航空发动机材料的发展[J]. 航空科学技术, 1998, 9(2): 13-15.

    Chen B Y. Development of aero-engine materials[J]. Aeronautical Science and Technology, 1998, 9(2): 13-15.

[4] Sims CT, Stoloff NS, Hagel WC. Superalloys II[M]. New York: John Wiley & Sons, 1987.

[5] David S A, Vitek J M, Babu S S, et al. Welding of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 1997, 2(2): 79-88.

[6] Vitek J M, David S A, Boatner L A. Microstructural development in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 1997, 2(3): 109-118.

[7] Park J W, Babu S S, Vitek J M, et al. Stray grain formation in single crystal Ni-base superalloy welds[J]. Journal of Applied Physics, 2003, 94(6): 4203-4209.

[8] Park J W, Vitek J M, Babu S S, et al. Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 2004, 9(6): 472-482.

[9] Babu S S, David S A, Park J W, et al. Joining of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 2004, 9(1): 1-12.

[10] Anderson T D. DuPont J N, DebRoy T. Stray grain formation in welds of single-crystal Ni-base superalloy CMSX-4[J]. Metallurgical and Materials Transactions A, 2009, 41(1): 181-193.

[11] Anderson T D. DuPont J N, DebRoy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling[J]. Acta Materialia, 2010, 58(4): 1441-1454.

[12] Liu Z Y, Qi H. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy[J]. Acta Materialia, 2015, 87: 248-258.

[13] Wang L, Wang N, Yao W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys[J]. Acta Materialia, 2015, 88: 283-292.

[14] Wang L, Wang N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys: experimental investigation[J]. Acta Materialia, 2016, 104: 250-258.

[15] 郭文渊, 王东生, 王茂才. 镍基超合金的Nd-YAG激光熔敷涂层行为研究[J]. 应用激光, 2002, 22(2): 101-104, 154.

    Guo W Y, Wang D S, Wang M C. Study on behaviors of Nd-YAG laser cladding on Ni-base superalloys[J]. Applied Laser, 2002, 22(2): 101-104, 154.

[16] 唐林峰, 王楠, 管强, 等. 单晶合金激光熔凝过程中晶向对单晶完整性的影响[J]. 物理学报, 2010, 59(11): 7941-7948.

    Tang L F, Wang N, Guan Q, et al. Effect of orientation on integrity of single crystal during laser melted single crystal[J]. Acta Physica Sinica, 2010, 59(11): 7941-7948.

[17] Rong P, Wang N, Wang L, et al. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6[J]. Journal of Alloys and Compounds, 2016, 676: 181-186.

[18] Guo J C, Chen W J, Yang R N, et al. The effect of substrate orientation on stray grain formation in the (111) plane in laser surface remelted single crystal superalloys[J]. Journal of Alloys and Compounds, 2019, 800: 240-246.

[19] Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004, 52(11): 3173-3182.

[20] Li JR, Zhong ZG, Liu SZ, et al. A low-cost second generation single crystal superalloy DD6[C] //Superalloys 2000 (Ninth International Symposium), September 17-21, 2000. Warrendale, PA: TMS, 2000: 777- 783.

[21] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1): 75-83.

[22] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering:A, 1997, 226/227/228: 763-769.

[23] Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

[24] Rappaz M, David S A, Vitek J M, et al. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds[J]. Metallurgical Transactions A, 1989, 20(6): 1125-1138.

[25] Churchman C, Bonifaz E A, Richards N L. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes[J]. Materials Science and Technology, 2011, 27(4): 811-817.

[26] Wang C Y, Beckermann C. Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metallurgical and Materials Transactions A, 1994, 25(5): 1081-1093.

[27] Mokadem S. Bezen{c}on C, Hauert A, et al. Laser repair of superalloy single crystals with varying substrate orientations[J]. Metallurgical and Materials Transactions A, 2007, 38(7): 1500-1510.

[28] Wei Y H, Liu R P, Dong Z J, et al. Stress/strain distributions for weld metal solidification crack in stainless steels[J]. China Welding, 2000, 9(1): 36-41.

[29] Wei Y H, Liu R P, Dong Z J. Development of the model for simulating weld metal solidification cracking in stainless steel[J]. China Welding, 1999, 8(2): 3-5.

[30] Dong H B, Lee P D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Materialia, 2005, 53(3): 659-668.

[31] 李祚, 隋尚, 袁子豪, 等. 高沉积率激光熔覆沉积GH4169合金的微观组织与拉伸性能[J]. 中国激光, 2019, 46(1): 0102004.

    Li Z, Sui S, Yuan Z H, et al. Microstructure and tensile properties of high-deposition-rate laser metal deposited GH4169 alloy[J]. Chinese Journal of Lasers, 2019, 46(1): 0102004.

[32] 周显新, 辛博, 巩亚东, 等. 扫描方向对变厚度熔覆成形件组织与力学性能的影响[J]. 中国激光, 2019, 46(8): 0802003.

    Zhou X X, Xin B, Gong Y D, et al. Effect of scanning direction on microstructure and mechanical properties of part formed via variable thickness layer cladding deposition[J]. Chinese Journal of Lasers, 2019, 46(8): 0802003.

[33] 张金智, 张安峰, 王宏, 等. 微锻造激光熔覆沉积高性能TC4组织与各向异性[J]. 中国激光, 2019, 46(4): 0402009.

    Zhang J Z, Zhang A F, Wang H, et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 2019, 46(4): 0402009.

荣鹏, 郭嘉琛. 基体取向对激光熔覆修复区域杂晶形成的影响[J]. 中国激光, 2021, 48(6): 0602110. Peng Rong, Jiachen Guo. Effect of Substrate Orientation on Formation of Heterocrystals in Laser Cladding Zone[J]. Chinese Journal of Lasers, 2021, 48(6): 0602110.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!