激光与光电子学进展, 2019, 56 (22): 220001, 网络出版: 2019-11-02   

InP基近红外单光子雪崩光电探测器阵列 下载: 3148次封面文章

Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays
刘凯宝 1,2杨晓红 1,2,*何婷婷 1,2王晖 1,2
作者单位
1 中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100086
2 中国科学院大学材料科学与光电技术学院, 北京 100049
引用该论文

刘凯宝, 杨晓红, 何婷婷, 王晖. InP基近红外单光子雪崩光电探测器阵列[J]. 激光与光电子学进展, 2019, 56(22): 220001.

Kaibao Liu, Xiaohong Yang, Tingting He, Hui Wang. Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001.

参考文献

[1] Levine B F, Bethea C G, Campbell J C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector[J]. Applied Physics Letters, 1985, 46(4): 333-335.

[2] Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module[J]. Optics Express, 2007, 15(13): 8237-8242.

[3] Quantumcommunications[J]. Bulletin of the Chinese Academy of Sciences, 2016, 30( 2): 87- 90.

[4] Browell EV, Vaughan WR, Hall WM, et al. Development of a high-altitude airborne dial system: the Lidar Atmospheric Sensing Experiment (LASE)[C]∥In its 13th International Laser Radar Conference 4 p (SEE N87-10263 01-35), August 11-15, 1986, Toronto, Ontario. USA: NASA, 1986.

[5] CovaS, GhioniM, RechI. Photon counting and timing detector modules for single-molecule spectroscopy and DNA analysis[C]∥The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004., November 11-11, 2004, Rio Grande, Puerto Rico. New York: IEEE, 2004: 70- 71.

[6] Stellari F, Song P L, Weger A J. Single photon detectors for ultra low voltage time-resolved emission measurements[J]. IEEE Journal of Quantum Electronics, 2011, 47(6): 841-848.

[7] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705.

[8] Buller G S, Collins R J. Single-photon generation and detection[J]. Measurement Science and Technology, 2010, 21(1): 012002.

[9] Eisaman M D, Fan J, Migdall A, et al. Invited review article: single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101.

[10] Melchior H, Lynch W T. Signal. ED-[J]. noise response of high speed germanium avalanche photodiodes. IEEE Transactions on Electron Devices, 1966, 13(12): 829-838.

[11] Dash W C, Newman R. Intrinsic optical absorption in single-crystal germanium and silicon at 77°K and 300°K[J]. Physical Review, 1955, 99(4): 1151-1155.

[12] 迟楠, 卢星宇, 王灿, 等. 基于LED的高速可见光通信[J]. 中国激光, 2017, 44(3): 0300001.

    Chi N, Lu X Y, Wang C, et al. High-speed visible light communication based on LED[J]. Chinese Journal of Lasers, 2017, 44(3): 0300001.

[13] 朱峰, 王琴. 基于指示单光子源的量子密钥分配协议[J]. 光学学报, 2014, 34(6): 0627002.

    Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

[14] Comandar L C, Fröhlich B, Dynes J F, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm[J]. Journal of Applied Physics, 2015, 117(8): 083109.

[15] Donnelly J P, Duerr E K. McIntosh K A, et al. Design considerations for 1.06-μm InGaAsP-InP Geiger-mode avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 2006, 42(8): 797-809.

[16] Itzler M A, Jiang X D, Entwistle M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200.

[17] Jiang X D, Itzler M A, Ben-Michael R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895-905.

[18] Jiang X D, Itzler M. O’Donnell K, et al. InP-based single-photon detectors and Geiger-mode APD arrays for quantum communications applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 5-16.

[19] Jensen K E, Hopman P I, Duerr E K, et al. Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 μm wavelength[J]. Applied Physics Letters, 2006, 88(13): 133503.

[20] 上官明佳. 1.5 μm单光子探测器在激光遥感中的应用[D]. 合肥: 中国科学技术大学, 2017.

    Shangguan MJ. Laser remote sensing with 1.5 μm single photon detectors[D]. Hefei: University of Science and Technology of China, 2017.

[21] Itzler M A, Ben-Michael R, Hsu C F, et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications[J]. Journal of Modern Optics, 2007, 54(2/3): 283-304.

[22] 刘俊良. 基于InGaAs(P)/InP APD的单光子探测器的研制和性能研究[D]. 济南: 山东大学, 2018.

    Liu JL. Design and performance study of single-photon detectors based on InGaAs(P)/InP PADs[D]. Jinan: Shandong University, 2018.

[23] Intermite G. McCarthy A, Warburton R E, et al. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays[J]. Optics Express, 2015, 23(26): 33777-33791.

[24] McIntosh K A, Donnelly J P, Oakley D C, et al. . InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm[J]. Applied Physics Letters, 2002, 81(14): 2505-2507.

[25] Aull B F, Loomis A H, Young D J, et al. Geiger-mode avalanche photodiodes for three-dimensional imaging[J]. Lincoln Laboratory Journal, 2002, 13(2): 335-350.

[26] Chen CL, Yost DR, Knecht JM, et al. Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits[C]∥2009 IEEE International Conference on 3D System Integration, September 28-30, 2009, San Francisco, CA, USA. New York: IEEE, 2009: 10943264.

[27] 卜禹铭, 曾朝阳, 杜小平, 等. 激光三维成像中光电混频技术的研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080002.

    Bu Y M, Zeng Z Y, Du X P, et al. Research progress of photoelectric mixing technology in laser three-dimensional imaging[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080002.

[28] Schuette D R, Westhoff R C, Loomis A H, et al. Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays[J]. Proceedings of SPIE, 2010, 7681: 76810P.

[29] Glettler J B, Hopman P, Verghese S, et al. InP-based single-photon detector arrays with asynchronous readout integrated circuits[J]. Optical Engineering, 2008, 47(10): 100502.

[30] Frechette J, Grossmann P J, Busacker D E, et al. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes[J]. Proceedings of SPIE, 2012, 8375: 83750W.

[31] Verghese S, Donnelly J P, Duerr E K, et al. Arrays of InP-based avalanche photodiodes for photon counting[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 870-886.

[32] Chau Q, Jiang X D, Itzler M A, et al. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs[J]. Proceedings of SPIE, 2015, 9492: 94920O.

[33] Younger RD, Donnelly JP, Goodhue WD, et al. Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays[C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA. New York: IEEE, 2016: 260- 261.

[34] Jiang LA, Luu JX. Turbulence mitigation for coherent ladar using photon counting detector arrays[C]∥Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, June 25-30, 2006, Whistler, Canada. Washington, D.C.: OSA, 2006: CWB6.

[35] Itzler M A, Entwistle M, Owens M, et al. Comparison of 32 × 128 and 32 × 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of SPIE, 2011, 8033: 80330G.

[36] Itzler M A, Entwistle M, Krishnamachari U, et al. SWIR Geiger-mode APD detectors and cameras for 3D imaging[J]. Proceedings of SPIE, 2014, 9114: 91140F.

[37] Tosi A, Calandri N, Sanzaro M, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 192-197.

[38] Calandri N, Sanzaro M, Motta L, et al. Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1767-1770.

[39] 张秀川, 蒋利群, 高新江, 等. InGaAs/InP盖革模式雪崩焦平面阵列的研制[J]. 半导体光电, 2015, 36(3): 356-360, 391.

    Zhang X C, Jiang L Q, Gao X J, et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays[J]. Semiconductor Optoelectronics, 2015, 36(3): 356-360, 391.

[40] Wu G, Zhou C Y, Chen X L, et al. High performance of gated-mode single-photon detector at 1.55 μm[J]. Optics Communications, 2006, 265(1): 126-131.

[41] Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 2015, 4(5): e286.

[42] Zheng L X, Yang J H, Liu Z, et al. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging[J]. Proceedings of SPIE, 2013, 8907: 890744.

[43] 郑丽霞, 吴金, 张秀川, 等. InGaAs单光子探测器传感检测与淬灭方式[J]. 物理学报, 2014, 63(10): 104216.

    Zheng L X, Wu J, Zhang X C, et al. Sensing detection and quenching method for InGaAs single-photon detector[J]. Acta Physica Sinica, 2014, 63(10): 104216.

[44] 杨俊浩. 雪崩光电二极管阵列型全集成传感读出电路设计[D]. 南京: 东南大学, 2014.

    Yang JH. The design of fully integrated readout circuit based on avalanche photon diode sensor array[D]. Nanjing: Southeast University, 2014.

[45] Clifton W E, Steele B, Nelson G, et al. Medium altitude airborne Geiger-mode mapping LIDAR system[J]. Proceedings of SPIE, 2015, 9465: 946506.

刘凯宝, 杨晓红, 何婷婷, 王晖. InP基近红外单光子雪崩光电探测器阵列[J]. 激光与光电子学进展, 2019, 56(22): 220001. Kaibao Liu, Xiaohong Yang, Tingting He, Hui Wang. Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!