红外与毫米波学报, 2015, 34 (4): 0396, 网络出版: 2015-10-22  

酞菁铜缓冲层对有机太阳能电池开路电压的影响

Effect of copper phthalocyanine buffer layer on open circuit voltage in organic solar cells
作者单位
北京大学 纳米器件物理与化学教育部重点实验室, 北京100871
摘要
用p型有机半导体材料酞菁铜作为阴极缓冲层制作了器件结构为氧化铟锡/酞菁锌/碳六十/酞菁铜/铝的有机小分子太阳能电池, 对器件进行电学测量发现酞菁铜缓冲层的厚度对器件的开路电压有明显影响.基于半导体器件物理分析了光照下测量得到的电流-电压曲线, 由拟合结果得到的器件参数表明高理想因子导致了器件开路电压升高, 其原因为器件的输运特性不只受酞菁锌与碳六十形成的p-n结影响, 还与酞菁铜缓冲层与铝电极形成的肖特基接触有关.研究表明在有机太阳能电池器件中引入一个合适的缓冲层/阴极肖特基结可以提高器件的开路电压.
Abstract
The effect of copper phthalocyanine (CuPc) buffer layer on open circuit voltage in indium tin oxide/zinc phthalocyanine (ZnPc)/C60/CuPc/Al devices is investigated. A dependence of the open circuit voltage on the thickness of CuPc layer is observed. We analyze the current-voltage curves under illumination based on semiconductor device theory. A high ideality factor is found as the reason for the high open circuit voltage. We propose that both ZnPc/C60 junction and CuPc/Al contact contribute the high ideality factor. Our result shows that the open circuit voltage may be improved by introducing an extra rectifying buffer/cathode junction.
参考文献

[1] Mishra A, Bauerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology[J]. Angew. Chem. Int. Ed., 2012, 51(9): 2020-2067.

[2] Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells[J]. J. Mater. Chem., 2010, 20(13): 2499-2512.

[3] Potscavage W J, Sharma A, Kippelen B. Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage[J]. Acc. Chem. Res., 2009, 42(11): 1758-1767.

[4] Peumans P, Bulovic V, Forrest S R. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes[J]. Appl. Phys. Lett., 2000, 76(19): 2650-2652.

[5] Song Q L, Li F Y, Yang H, et al. Small-molecule organic solar cells with improved stability[J]. Chem. Phys. Lett., 2005, 416(1-3): 42-46.

[6] Hong Z R, Huang Z H, Zeng X T. Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions[J]. Chem. Phys. Lett., 2006, 425(1-3): 62-65.

[7] Liu Y, Ren Q, Su Z, et al. The working mechanism of organic photovoltaic cell by using copper phthalocyanine as exciton blocking layer[J]. Org. Electron., 2012, 13(10): 2156-2159.

[8] Chen D, Zhang C, Wang Z, et al. Performance Comparison of Conventional and Inverted Organic Bulk Heterojunction Solar Cells From Optical and Electrical Aspects[J]. IEEE Transactions on electron devices, 2013, 60(1): 451-457.

[9] Zhang C, Zhang J, Hao Y, et al. A simple and efficient solar cell parameter extraction method from a single current-voltage curve[J]. J. APPL. PHYS., 2011, 110(6): 064504.

[10] Uhrich C, Wynands D, Olthof S, et al. Origin of open circuit voltage in planar and bulk heterojunction organic thin-filmphotovoltaics depending on doped transport layers[J]. J. APPL. PHYS., 2008, 104(4): 043107.

[11] Shah J M, Li Y L, Gessmann T, et al. Experimental analysis and theoretical model for anomalously high ideality factors (n >> 2.0) in AlGaN/GaN p-n junction diodes[J]. J. APPL. PHYS., 2003, 94(4): 2627-2630.

[12] Rajaputra S, Vallurupalli S, Singh V P. Copper phthalocyanine based Schottky diode solar cells[J]. J. Mater. Sci: Mater. Electron., 2007, 18(11): 1147-1150.

[13] Zhang J, Wang D. Investigation of CuPc Organic Film Schottky Diode[J]. J. HARBIN UNIV. SCI. TECH., 2010, 15(4): 38-41 .

王桂伟, 邢英杰. 酞菁铜缓冲层对有机太阳能电池开路电压的影响[J]. 红外与毫米波学报, 2015, 34(4): 0396. WANG Gui-Wei, XING Ying-Jie. Effect of copper phthalocyanine buffer layer on open circuit voltage in organic solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 0396.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!