光学学报, 2014, 34 (9): 0922003, 网络出版: 2014-07-22   

腔体吸收器位置对太阳能槽式系统光热转换性能的影响

Influence of Photo-Thermal Conversion Characteristics by the Position of Cavity Absorber in Parabolic Trough Solar Concentrator
作者单位
1 云南师范大学太阳能研究所, 云南 昆明 650500
2 云南师范大学物理与电子信息学院, 云南 昆明 650500
摘要
针对腔体吸收器安装位置对其光热转换性能的影响进行了理论、模拟、实验研究。构建了太阳能槽式系统吸收器表面辐射热损失的物理模型,并进行了数学验证,结果表明吸收器表面的辐照度趋于均匀分布时,系统的热辐射损失减小。基于TracePro软件模拟了腔体吸收器在不同位置时的光学效率、辐照度标准差,发现腔体吸收器安装位置小于焦距时可获得较好的光学性能,采用焦距为1200 mm的槽式系统进行了腔体吸收器光热转换性能的实验验证,当腔体吸收器安装焦距为系统焦距的98.75%,集热温度为201.3 ℃时,所构建的槽式系统的热效率可达35.53%。
Abstract
The photo-thermal conversion characteristic of cavity absorber in parabolic trough solar concentrator is researched by theory, simulation and experiment. The thermal radiation loss model of cavity absorber in parabolic trough solar concentrator is established and demonstrated. Results show that while the irradiance distribution of cavity tends to be uniformity, the thermal radiation loss is reduced. The optical efficiency and standard deviation of cavity absorber at different positions are simulated by the optical design software TracePro. Results show that better optical performance can be obtained if the installed position is less than the focal length. The thermal efficiency of the cavity absorber is 35.53% with the temperature of 201.3 ℃ and the installed focal length of cavity absorber is 98.75% of system focal length which is 1200 mm parabolic trough solar concentrator by experimental verification.
参考文献

[1] C S Solanki, C S Sangani, D Gunashekar, et al.. Enhanced heat dissipation of V-trough PV modules for better performance [J]. Solar Energy Materials and Solar Cells, 2008, 92(12): 1634-1638.

[2] Tao Tao, Zheng Hongfei, He Kaiyan, et al.. A new trough solar concentrator and its performance analysis [J]. Solar Energy, 2011, 85(1): 198-207

[3] A Fernández-García, E Zarza, L Valenzuela, et al.. Parabolic-trough solar collectors and their applications [J]. Renew Sust Energ Rev, 2010, 14(7): 1695-1721.

[4] He Yaling, Xiao Jie, Cheng Zedong, et al.. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector [J]. Renew Energy, 2011, 36(3): 976-985.

[5] Gong Guangjie, Huang Xinyan, Wang Jun, et al.. An optimized model and test of the China′s first high temperature parabolic trough solar receiver [J]. Sol Energy, 2010, 84(12): 2230-2245.

[6] 陈飞, 李明, 季旭, 等. 太阳能槽式系统反射镜玻璃厚度对聚光特性的影响研究[J]. 光学学报, 2012, 32(12): 1208002.

    Chen Fei, Li Ming, Ji Xu, et al.. Influence of glass thickness of reflector mirror on the concentrating characteristics in the solar trough system [J]. Acta Optica Sinica, 2012, 32(12): 1208002.

[7] 江守利, 陈则韶, 胡芃, 等. 二次反射聚光器分频光伏系统的三维光学模型[J]. 太阳能学报, 2009, 30(9): 1188-1193.

    Jiang Shouli, Chen Zeshao, Hu Peng, et al.. Three-dimension optical model of two-stage reflective spectral beam splitting concentrating PV system [J]. Acta Energiae Solaris Sinica, 2009, 30(9): 1188-1193.

[8] 江守利. 反射聚光利用太阳能的基础理论与实验研究[D]. 合肥: 中国科学技术大学, 2009. 77-103.

    Jiang Shouli. Fundamental Theory and Experimental Study of Reflective Concentrating Solar Energy Utilization [D]. Hefei: University of Science and Technoligy of China, 2009. 77-103.

[9] J S Coventry. A Solar Concentrating Photovoltaic/Thermal Collector [D]. Canberra: Australian National University, 2004. 101-138.

[10] 崔映红, 卑振华, 赵熙. 抛物面槽式太阳能集热器场热损失分析[J]. 可再生能源, 2010, 28(5): 5-9.

    Cui Yinghong, Bei Zhenhua, Zhao Xi. Research on the heat loss of parabolic trough solar collector field [J]. Renewable Energy Resources, 2010, 28(5): 5-9.

[11] 帅永, 张晓峰, 谈和平. 抛物面式太阳能聚能系统聚光特性模拟[J]. 工程物热理学报, 2006, 27(3): 484-486.

    Shuai Yong, Zhang Xiaofeng, Tan Heping. Simulation for concentrating characteristic of parabolic solar collector system [J]. Journal of Engineering Thermophysics, 2006, 27(3): 484-486.

[12] A Maccari, M Montecchi. An optical profilometer for the characterization of parabolic trough solar concentrators [J]. Sol Energy, 2007, 81(2): 185-194.

[13] X Ju, Z F Wang, G Flamant, et al.. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system [J]. Sol Energy, 2011, 86(6): 1941-1954.

[14] X Ju, A Vossier, Z F Wang, et al.. An improved temperature estimation method for solar cells operating at high concentrations [J]. Sol Energy, 2013, 93: 80-89.

[15] M H Guo, Z F Wang. On the analysis of an elliptical Gaussian flux image and its equivalent circular Gaussian flux images [J]. Sol Energy, 2011, 85(5): 1144-1163.

[16] 许成木, 李明, 季旭, 等. 槽式太阳能聚光器焦面能流密度分布的频数统计分析[J]. 光学学报, 2013, 33(4): 0408001.

    Xu Chengmu, Li Ming, Ji Xu, et al.. Frequency statistics analysis for energy-flux-density distribution on focal plane of parabolic trough solar concentrators [J]. Acta Optica Sinica, 2013, 33(4): 0408001.

[17] E Bilgen, H Oztop. Natural convection heat transfer in partially open inclined square cavities [J]. Int J Heat Mass Tran, 2005, 48(8): 1470-1479.

[18] H Zhai, Y J Dai, J Y Wu, et al.. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas [J]. Appl Energy, 2009, 86(9): 1395-1404.

[19] H Zhai, Y J Dai, J Y Wu, et al.. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens [J]. Energy Convers Manage, 2010, 51(1): 48-55.

[20] 文玉良, 丁静, 杨建平, 等. 聚光太阳能热发电中吸热器吸收涂层的选择[J]. 太阳能学报, 2009, 30(6): 764-768.

    Wen Yuliang, Ding Jing, Yang Jianping, et al.. Selection of solar coatings in concentaring solar power [J]. Acta Energiae Solaris Sinica, 2009, 30(6): 764-768.

[21] K D Olson, J J Talghader. Absorption to reflection transition in selective solar coatings [J]. Opt Express, 2012, 20(4): 554-559.

[22] N P Sergeant, M Agrawal, P Peumans. High performance solar-selective absorbers using coated sub-wavelength gratings [J]. Opt Express, 2010, 18(6): 5525-5540.

[23] Z Y Nuru, C J Arendse, S Khamlich, et al.. Optimization of AlxOy/Pt/AlxOy multilayer spectrally selective coatings for solar-thermal applications [J]. Vacuum, 2012, 86(12): 2129-2135.

[24] 田琦. 水在玻璃管真空管太阳集热器热性能计算与分析[J]. 能源技术, 2007, 28(3): 144-148.

    Tian Qi. Calculation and analysis of thermal performance of the water-in-glass evacuated tubular solar collector [J]. Energy Technology, 2007, 28(3): 144-148.

[25] T T Chow. A review on photovoltaic/thermal hybrid solar technology [J]. Appl Energy, 2010, 87(4): 365-379.

[26] S K Tyagi, S W Wang, M K Singhal, et al.. Exergy analysis and parametric study of concentrating type solar collectors [J]. Int J Therm Sci, 2007, 46(10): 1304-1310.

[27] P L Singh, R M Sarviya, J L Bhagoria. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers [J]. Appl Energy, 2010, 87(6): 541-550.

陈飞, 李明, 许成木, 洪永瑞. 腔体吸收器位置对太阳能槽式系统光热转换性能的影响[J]. 光学学报, 2014, 34(9): 0922003. Chen Fei, Li Ming, Xu Chengmu, Hong Yongrui. Influence of Photo-Thermal Conversion Characteristics by the Position of Cavity Absorber in Parabolic Trough Solar Concentrator[J]. Acta Optica Sinica, 2014, 34(9): 0922003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!