作者单位
摘要
1 广东晶科电子股份有限公司, 广东 广州  511458
2 华南理工大学物理与光电学院 广东省光电工程技术研究开发中心, 广东 广州  510640
3 华南理工大学 微电子学院, 广东 广州  510640
大功率白光LED封装主要分为玻璃荧光片封装和荧光粉胶封装。本文提出一种用荧光胶封装大功率白光LED的方法,优化白光LED的发光面的均匀性,并分析了荧光胶封装和用荧光片封装的大功率白光LED的光热性能。实验结果表明,在1 400 mA电流驱动下,荧光胶封装白光LED的光通量为576.07 lm,比荧光片封装白光LED的光通量高15.5%,光转换效率为35.8%。在温度从25 ℃提升到125 ℃的过程中,荧光胶封装器件的亮度衰减了20%,色温从5 882.11 K提高到6 024.22 K。荧光胶封装的白光LED在常温下的热阻为1.7 K/W,与玻璃荧光片封装的热阻接近。在840 h高温高湿老化和1 600 h高温老化实验中,荧光胶封装的相对光衰均能稳定在97%。
大功率白光LED 玻璃荧光片 荧光粉胶 热性能 热稳定性 high power WLEDs PiG PiS photothermal performance thermal performance 
发光学报
2024, 45(3): 516
作者单位
摘要
1 1.同济大学 材料科学与工程学院, 上海 201804
2 2.同济大学 教育部土木工程先进材料重点实验室, 上海 200092
硼硅酸盐生物玻璃以其稳定的结构和优异的生物活性而受到广泛关注, 但生物玻璃在矿化过程中活性呈现初期快而中后期慢的趋势, 造成后期的活性降低。光热可加速生物玻璃降解, 本研究制备了以氮化钛为核、生物玻璃(40SiO2-20B2O3-36CaO-4P2O5)为壳的复合生物玻璃, 利用光热场干预生物玻璃的矿化过程。结果表明, 生物玻璃具有显著的光热效应, 光热能力随氮化钛掺杂量和激光功率密度的增加而提高;在体外浸泡中, 近红外光辐照促进了生物玻璃的降解, 浸泡7 d后模拟体液中钙、硼的含量分别增加12%~16%和8%~11%, 加速了羟基磷灰石的生成;细胞增殖活性实验表明样品有良好的生物安全性。因此, 光热场可促进生物玻璃降解和矿化, 对周围细胞影响小, 有望在保障初期生物安全的同时发挥调节作用。
硼硅酸盐生物活性玻璃 核壳结构 热性能 矿化性能 borosilicate bioactive glass core-shell structure photothermal performance mineralization 
无机材料学报
2023, 38(6): 708
梁仁瓅 1,2刘佳欣 3赵九洲 4彭洋 4[ ... ]杨军 1,*
作者单位
摘要
1 电子科技大学(深圳)高等研究院,广东 深圳 518110
2 深圳信息职业技术学院信息技术研究所,广东 深圳 518172
3 华中科技大学机械科学与工程学院,湖北 武汉 430074
4 华中科技大学航空航天学院,湖北 武汉 430074
利用纳米银烧结工艺制备大功率LED,重点探究了纳米银键合层的界面热阻及器件发光性能。通过将纳米银膏在不同温度下烧结,系统地研究了烧结温度对纳米银烧结后电阻率及接头剪切强度的影响,并分析了烧结后银膏的晶体结构及接头断口微观形貌。结果表明,接头键合强度和银膜导电率均随纳米银烧结温度的升高而增大。实验中还对比分析了纳米银烧结LED和传统锡银铜(SAC305)焊膏封装LED的界面热阻、结温以及发光性能。与纳米银烧结LED样品相比,传统焊膏封装LED的界面热阻和结温分别提高了8.9%和29.6%,说明纳米银键合层拥有更好的导热性并可及时为芯片散热降温。此外,通过高温老化实验,深入探讨了不同焊膏烧结LED的界面热阻及发光效率变化。实验表明,经过100 ℃下点亮500 h,纳米银和传统焊膏烧结LED样品的总热阻分别增大了0.03 K/W和4.28 K/W,但纳米银键合层界面热阻比老化前有所降低,同时纳米银烧结LED样品在不同电流下的发光效率始终高于传统焊膏封装LED样品。
材料 大功率LED 热性能 发光稳定性 纳米银烧结 界面热阻 
光学学报
2023, 43(2): 0216002
作者单位
摘要
1 1.华东理工大学 材料科学与工程学院, 上海 200237
2 2.华东理工大学 化学与分子工程学院, 上海 200237
3 3.石河子大学 化学化工学院, 石河子 832003
近年来, 由于具有较好的近红外区吸收、结构可调等特点, 有机小分子光热剂在生物医药领域展示出广阔的应用前景。然而, 大部分有机小分子光热剂仍面临水溶性较差、生物稳定性不佳、光热转换效率较低等挑战。本研究发展了一种简便的合成方法, 制备了负载Flav7的氧化硅基杂化胶束(FPOMs)用于高效的光热治疗。首先利用嵌段共聚物PS132-b-PAA16自组装行为负载疏水近红外有机小分子Flav7得到胶束体系, 进一步引入3-巯基丙基三甲氧基硅烷(MPTMS)和聚乙二醇(PEG)对上述胶束体系进行结构固定和表面改性得到FPOMs。研究表明, 在808 nm波长激光的激发下, FPOMs展现出优异的光热稳定性和较高的光热转换效率(46.7%)。细胞实验证实FPOMs具有良好的生物相容性和光热毒性, 有望作为一类新型的纳米光热剂用于肿瘤高效安全光热治疗。
Flav7 氧化硅基材料 胶束 热性能 Flav7 silica-based material micelle photothermal property 
无机材料学报
2022, 37(11): 1236
作者单位
摘要
1 青海大学,新能源光伏产业研究中心,西宁 810016
2 清华大学材料学院,北京 100084
针对芒硝相变材料因过冷度大、相分层严重导致相变潜热存储循环寿命缩短的问题,以Na2SO4·10H2O- Na2CO3·10H2O-NaCl相变材料体系为基体、改进的Hummers法结合冷冻干燥和球磨工艺改性制备的亲水性纳米氧化石墨烯(Nano-GO)为添加剂,制得纳米氧化石墨烯/芒硝基复合相变材料(GO-MCPCMs)。结果表明:氧化处理过的纳米氧化石墨烯中O/C比例增加了65.75%,结构缺陷水平由0.224增至1.088,无团聚现象;纳米氧化石墨烯/芒硝基复合相变材料的结晶相变温度增至约23 ℃、过冷度减小至0 ℃、相分层消除,该复合相变体系中Na2SO4结晶体全部结晶为晶粒长度尺寸近于2 cm的Na2SO4·10H2O;500次固?液循环前后含氧化石墨烯质量分数为0.075%的GO-MCPCMs结晶潜热值分别为156.7 J/g和149.9 J/g,衰减率为4.3%,Nano-GO的加入明显改善了芒硝基复合相变体系的热稳定性。纳米氧化石墨烯/芒硝基复合相变材料具有良好的热循环稳定性和较长的使用寿命。
改性纳米石墨烯 改进Hummers法 芒硝基复合相变材料 结构与热性能 循环稳定性 modified nano graphene improved Hummers method mirabilite composite phase change materials structure and thermal property cycle stability 
硅酸盐学报
2022, 50(6): 1642
作者单位
摘要
1 青海大学,新能源光伏产业研究中心,西宁 810016
2 清华大学材料学院,北京 100084
碳海绵具有低密度、大孔体积、高导热系数等优点,可作为相变材料的良好载体。采用脱脂棉及MgO为原料,合成了具有一定石墨化特性、孔隙率达到96.3%的碳海绵为载体,以Na2SO4?10H2O/Na2HPO4?12H2O为相变介质,制备出多孔碳海绵封装的复合相变材料。结果表明:在700、800 ℃和900 ℃制得的碳海绵对相变材料的吸附量分别达到了自身质量的60、75倍和102倍。同时探讨了在不同温度下制得碳海绵封装的材料在5~60 ℃之间固液相变循环性能,经5 000次循环后,该相变材料的潜热仍在200 J·g-1以上,下降值均在13%以内,导热系数提升率均大于50%。该多孔碳海绵封装的复合相变材料在太阳能储能等领域具有很好的应用前景。
多孔碳海绵 封装 十水硫酸钠 十二水合磷酸氢二钠 复合相变材料 热性能 porous carbon sponge encapsulation sodium sulfate decahydrate disodium hydrogen phosphate dodecahydrate composite phase change material thermal performance 
硅酸盐学报
2022, 50(6): 1634
作者单位
摘要
1 西安工程大学材料工程学院,西安 710048
2 陕西航空电气有限责任公司,陕西 咸阳 713107
碳泡沫复合材料因其特有的多孔结构,在隔热、储能、吸附等领域具有广阔的应用前景。为进一步改善其力学、隔热性能,本工作以锆改性酚醛树脂、酚醛空心微球为原料,SiO2气凝胶为增强相,通过模压成型-碳化工艺制得SiO2气凝胶改性碳泡沫复合材料。采用扫描电子显微镜、万能试验机、比表面积及孔径分布测试仪等研究了SiO2气凝胶含量对碳泡沫复合材料的微观结构、压缩强度及抗氧化性能的影响;采用热常数仪研究了改性前后碳泡沫复合材料的热导率,分析其高温传热行为。结果表明:SiO2气凝胶弥散分布在碳泡沫韧带和微球表面处,并未改变碳泡沫的泡孔结构;当SiO2气凝胶的含量为2%(质量分数)时,压缩强度和比压缩强度达到最大值,分别为19.39 MPa和42.17 MPa·cm3/g,较改性前分别提高了106.7%和79.8%。引入适量SiO2气凝胶,可阻碍热量传播路径,限制辐射传热;当其含量为5%时,碳泡沫复合材料的隔热性能与抗氧化性能最佳,800 ℃的热导率仅为0.447 W/(m·K),较改性前降低了38.9%;700 ℃等温氧化30 min,碳泡沫质量损失为18%。
碳泡沫 二氧化硅气凝胶 热性能 压缩强度 carbon foam silicon dioxide aerogels thermal property compressive strength 
硅酸盐学报
2022, 50(5): 1316
作者单位
摘要
1 中国科学院上海光学精密机械研究所,高功率激光单元技术实验室,上海 201800
2 中国科学院大学,材料科学与光电工程中心,北京 100049
统计结构模拟法具有高效、准确等优点,可以帮助建立配方设计模型以适应不同类型高放废液的固化需求。以模拟高放废液硼硅酸盐玻璃固化体为例,以玻璃转变温度Tg、热膨胀系数α及Li、Na、B的元素浸出率为目标性质,研究了统计结构模拟法在核废料玻璃固化配方开发领域的应用。结果表明:利用样品的结构数据,可对硼硅酸盐玻璃固化体的Tg,α及化学稳定性进行较精确的模拟。模型验证结果显示,验证样品的预测值和实测值吻合较好,模拟意愿达0.94。统计结构模拟法可以辅助建立高放废液玻璃固化体配方数据库。
高放废液 玻璃固化 硼硅酸盐玻璃 热性能 化学稳定性 统计结构模拟 high-level liquid waste vitrification borosilicate glasses thermal properties chemical stability statistical structure modeling 
硅酸盐学报
2022, 50(5): 1301
作者单位
摘要
1 北方民族大学材料科学与工程学院, 银川 750021
2 粉体材料与特种陶瓷重点实验室, 银川 750021
以微米级SiC粉为原料, 采用冷冻干燥工艺制备具有连贯层状孔结构的SiC陶瓷。以多孔SiC陶瓷为基体, 石蜡为相变芯材, 通过真空浸渍法制备多孔SiC陶瓷/石蜡复合相变材料, 研究了石蜡在层状多孔SiC陶瓷内的浸渗行为及复合材料的储热性能。结果表明, 层片状多孔SiC陶瓷的显微形貌对石蜡的浸渗过程及储热性能有明显影响。当石蜡负载量为21.7%(质量分数)时, 复合相变材料熔融温度为59.6 ℃, 凝固温度为53.9 ℃, 相变潜热为28.4 J/g, 室温下的热导率为2.4 W·(m·K)-1。复合相变材料吸热峰和放热峰强度随着石蜡负载量减少而降低, 当温度为200 ℃时, 多孔SiC陶瓷/石蜡复合相变材料失重为5%(质量分数), 表明材料具有良好的热稳定性。复合相变材料在100 ℃热处理30 min后陶瓷基体未发生形变, 经100次热循环后具有稳定的相变潜热和良好的定型能力。
SiC陶瓷 复合相变材料 层状孔结构 石蜡 真空浸渍法 热性能 SiC ceramics composite phase change material laminated porous structure paraffin vacuum impregnation method heat storage performance 
硅酸盐通报
2022, 41(10): 3658
作者单位
摘要
1 华中科技大学 机械科学与工程学院,湖北 武汉 430074
2 华中科技大学 航空航天学院,湖北 武汉 430074
普通印刷电路板(PCB)材料热导率低,散热性能不佳,难以用于封装大功率器件。本文提出并制备了一种直接电镀铜陶瓷基板(DPC)的PCB基板(以下简称“内嵌基板”),利用陶瓷材料高热导率强化基板局部散热,并将其应用于大功率LED封装。使用胶粘剂将DPC基板固定在开窗的PCB基板中,电互连后得到内嵌基板。相较于普通PCB基板,相同电流下内嵌基板表面温度低,温升趋势放缓,当电流从200 mA增加到400 mA时,内嵌基板温升比普通PCB基板低约42.1 ℃。当电流为350 mA时,内嵌基板封装的LED样品热阻和结温变化分别为15.55 K/W和9.36 ℃,其光功率随电流增加而增大,并始终高于同电流下普通PCB基板封装LED;在400 mA时,两者光功率相差约16.7%。实验表明,内嵌基板是一种高性能、低成本的封装基板,可有效提高大功率LED散热性能,满足功率器件封装应用需求。
发光二极管(LED) 内嵌PCB 直接电镀铜陶瓷基板(DPC) 散热 热性能 LED embedded PCB direct plated copper ceramic substrate(DPC) heat dissipation photothermal properties 
发光学报
2022, 43(7): 1139

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!