光子学报, 2014, 43 (7): 0706009, 网络出版: 2014-08-18   

用于可信任中继量子密钥分配网络的差异化服务提供机制

A Differentialized Service Providing Scheme on Trusted Relay Quantum Key Distribution Networks
作者单位
北京邮电大学 信息与通信工程学院 信息光子学与光通信国家重点实验室, 北京 100876
摘要
为了向用户提供差异化的密钥服务,研究了配备密钥池的可信任量子密钥分配网络.首先,理论分析了数据包时延和密钥池的关系,给出了具体关系式,指出带有密钥池缓存功能的量子密钥分配网络的平均数据包时延与密钥产生速率、密钥池的初始密钥长度、以及数据包的平均长度、到达时间和到达率密切相关.对比理论分析和软件仿真结果,验证了时延分析的正确性.其次,将密钥提供服务分为三类:保证提供型、优先提供型和尽力提供型,并提出了相应的技术实现方案,即提前预约、逐跳插队和逐跳排队;最后,仿真结果表明差异化密钥服务提供机制是有效的.
Abstract
In order to provide different quantum key service, trusted relay quantum key distribution networks with quantum key pool was studied. Firstly, relationship between packet delay and quantum key pool was analyzed. The formula was given, which showed that the mean packet delay is related to the quantum key generation rate, the initial length of quantum key, the mean length, arrival time and arrival rate of packets. The theory and simulation results verified the accuracy of the delay analysis. Next, the key providing service was classified into three types: guaranteed, prioritized and besteffort key service. Correspondingly, prereserving, hopbyhop jumpingqueue and hopbyhop queuing approaches were presented to realize the above differentialized key services. Finally, simulation results verified the efficiency of the differentialized service providing scheme.
参考文献

[1] BENNETT C H, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[C]. IEEE, 1984: 175-179.

[2] ELLIOTT C, COLVIN A, PEARSON D, et al. Current status of the DARPA quantum network[C]. SPIE, 2005, 5815: 138-149.

[3] POPPE A, PEEV M, MAURHART O. Outline of the SECOQC quantumkeydistribution network in Vienna[J]. International Journal of Quantum Information, 2008, 6(2): 209-218.

[4] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11): 10387-10409.

[5] CHEN Wei, HAN Zhengfu, ZHANG Tao, et al. Field experiment on a “star type” metropolitan quantum key distribution network[J]. IEEE Photonics Technology Letters, 2009, 21(9): 575-577.

[6] XU Fangxing, CHEN Wei, WANG Shuang, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network[J]. Chinese Science Bulletin, 2009, 54(17): 2991-2997.

[7] HAN Zhengfu, XU Fangxing, CHEN Wei, et al. An applicationoriented hierarchical quantum cryptography network test bed[C]. IEEE, 2010.

[8] ELLIOT C. Building the quantum network[J]. New Journal of Physics, 2002, 4(46): 1-12.

[9] MAEDA W, TANAKA A, TAKAHASHI S, et al. Technologies for quantum key distribution networks integrated with optical communication networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(6): 1591-1601.

[10] DAULER E A, SPELLMEYER N W, KERMAN A J, et al. Highrate quantum key distribution with superconducting nanowire single photon detectors[C]. IEEE, 2010.

[11] SHIMIZU K, HONJO T, FUJIWARA M, et al. Performance of longdistance quantum key distribution over 90 km optical links installed in a field environment of Tokyo metropolitan area[J]. IEEE Journal of Lightwave Technology, 2014, 32(1): 141-151.

[12] WEN Hao, HAN Zhengfu, GUO Guangcan, et al. The queuing model for quantum key distribution network[J]. Chinese Physics B, 2009, 18(1): 46-50.

[13] CHENG Xianzhu, SUN Yongmei, JI Yuefeng. A QoSsupported scheme for quantum key distribution[C]. IET, 2011: 220-224.

孙咏梅, 程先柱, 纪越峰. 用于可信任中继量子密钥分配网络的差异化服务提供机制[J]. 光子学报, 2014, 43(7): 0706009. SUN Yongmei, CHENG Xianzhu, JI Yuefeng. A Differentialized Service Providing Scheme on Trusted Relay Quantum Key Distribution Networks[J]. ACTA PHOTONICA SINICA, 2014, 43(7): 0706009.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!