光谱学与光谱分析, 2021, 41 (4): 1131, 网络出版: 2021-04-12  

基于跨平台红外高光谱观测的对流层三维风场测量

Tropospheric 3D Winds Measurement Based on Cross-Platform Infrared Hyperspectral Observation
作者单位
1 中国科学院红外探测与成像技术重点实验室, 上海 200083
2 中国科学院上海技术物理研究所, 上海 200083
3 中国科学院大学, 北京 100049
4 国家卫星气象中心中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
摘要
精确的风场数据对提高数值天气预报准确性具有重要意义, 对流层风是改进天气预报的要素之一。 虽然利用气象卫星成像仪对连续云图追踪特征目标进行导风是一种有效的风场观测方法, 且在区域和全球尺度上改善了数值天气预报, 但仍存在风场高度分配模糊问题而产生误差。 星基红外高光谱探测仪具备大气温湿度廓线垂直探测能力, 通过分析各个垂直分层内的大气参数运动得到三维风场, 能够提升风场垂直高度的准确性, 改进风场高度分配模糊问题。 提出了利用跨平台极轨气象卫星FY-3D星红外高光谱大气探测仪HIRAS和NOAA-20星跨轨红外探测仪CrIS交叉观测对流层三维风场的创新方法, 根据两仪器近重叠轨道星下点交叉观测辐射数据匹配水汽通道图像, 通过稠密光流法分析目标运动变化并计算风场, 对风矢量进行质量控制后同ERA-Interim再分析资料作定量化比较, 分析风速均值绝对偏差、 均方根误差和风向均值绝对偏差。 分别对2019年2月20日UTC世界时00:00, 06:00, 12:00的HIRAS和CrIS交叉数据计算200, 300, 400, 600, 650和1 000 hPa六组垂直高度风场, 结果表明, 风速范围的变化趋势与再分析资料表现一致, 风速范围随高度降低而减小, 高层对20 m·s-1以上风速更敏感, 地表附近测得风速集中在10 m·s-1以内。 风速均值绝对偏差多数小于3 m·s-1, 最大不超过4 m·s-1, 风速均方根误差多数小于3.5 m·s-1, 最大不超过4.5 m·s-1, 风向均值绝对偏差多数小于30°, 最大不超过40°。 风场误差主要来自仪器自身设计参数不同引入辐射数据的观测偏差, 以及因数据空间分辨率不同导致在图像重投影处理过程中引入的定位偏差。
Abstract
Precise wind field data is essential for improving the accuracy of the numerical weather forecast, and tropospheric winds are not satisfied with the requirements as one of the key measurement objectives for improving weather forecasts. Although meteorological satellite-based imager derived winds by tracking the motion of characteristic targets in continuous cloud field images is an effective observation method that has improved numerical weather prediction forecasts on both regional and global scales, an error still exists in the ambiguity of the vector height assignment. Satellite-based infrared hyperspectral sounder has the capability of atmospheric vertical detection of temperature and humidity profiles, which can provide more accurate vector height assignment of wind field by analyzing atmospheric motion vectors among multiple vertical layers, improving the ambiguity of the vector height assignment. We proposed a method of tropospheric 3D winds measurement on cross-platform polar meteorological satellite-based infrared hyperspectral sounders of FY-3D/HIRAS and NOAA-20/CrIS, collocated vapor channel images through nadir overpass observations of both instruments, derived wind field by calculating the motion of dense optical flow field, combined ERA-Interim reanalysis data to verify the mean absolute deviation(MAE) and root mean square error(RMSE) of wind speed and the MAE of wind direction after quality control. The vertical wind fields of 200, 300, 400, 600, 650 and 1 000 hPa are calculated through observations of HIRAS and CrIS at 00:00, 06:00 and 12:00 UTC on February 20, 2019, the results show that, the trend of the variation of wind speed range is consistent with ERA-Interim reanalysis data, the wind speed range decreases as the height decreases, the upper layers are more sensitive to wind speeds above 20 m·s-1, while wind speeds measured near the surface are concentrated within 10 m·s-1. The MAE of wind speed is mostly less than 3 m·s-1 while the maximum value is less than 4 m·s-1, the RMSE of wind speed is mostly less than 3.5 m·s-1 while the maximum value is less than 4.5 m·s-1, the MAE of wind direction is mostly less than 30° while the maximum value is less than 40°. The wind field error mainly comes from the observation deviation of radiation data due to different instrument parameters, along with the positioning deviation of data image re-projection due to different spatial resolution.
参考文献

[1] Baker W E, Atlas R, Cardinali C, et al. Bulletin of the American Meteorological Society, 2014, 95(4): 543.

[2] Pagano T S, Abesamis C, Andrade A, et al. Proc. SPIE, 2018, 10769: 1076906.

[3] Velden C, Dengel G, Dengel R, et al. Determination of Wind Vectors by Tracking Features on Sequential Moisture Analyses Derived From Hyperspectral IR Satellite Soundings. 13th AMS Conf. on Satellite Meteror. and Ocean., Amer. Meteor. Soc., 2004.

[4] Maschhoff K R, Polizotti J J, Aumann H H, et al. Mistic Winds: A Microsatellite Constellation Approach to High-Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements. Proc. SPIE, 2016, 9978: 997804.

[5] QI Cheng-li, GU Ming-jian, HU Xiu-qing, et al(漆成莉, 顾明剑, 胡秀清, 等). Advances in Meteorological Science and Technology(气象科技进展), 2016, 6(1): 88.

[6] Wang L, Chen Y. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2024.

[7] Chen Y, Han Y, Weng F. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 1147.

[8] Wu C Q, Qi C L, Hu X Q, et al. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3965.

[9] Glumb R, Lapsley M, Luce S, et al. HyperCube: a Hyperspectral CubeSat Constellation for Measurements of 3D Winds. Proc. SPIE, 2016, 9978: 997805.

[10] Yang J, Zhang P, Lu N, et al. International Journal of Digital Earth, 2012, 5(3): 251.

[11] QI Cheng-li, ZHOU Fang, WU Chun-qiang, et al(漆成莉, 周 方, 吴春强, 等). Optics and Precision Engineering(光学精密工程), 2019, 27(4): 747.

[12] Han Y, Revercomb H, Cromp M, et al. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12734.

[13] YANG Tian-hang, HU Xiu-qing, XU Han-lie, et al(杨天杭, 胡秀清, 徐寒列, 等). Acta Optica Sinica(光学学报), 2019, 39(11): 377.

[14] Santek D, Nebuda S, Stettner D. Remote Sensing, 2019, 11(22): 2597.

[15] Saunders R, Hocking J, Turner E, et al. Geoscientific Model Development, 2018, 11(7): 2717.

[16] Zhu L, Bao Y, Petropoulos G P, et al. Remote Sensing, 2020, 12(3): 435.

[17] Farnebck G. Two-Frame Motion Estimation Based on Polynomial Expansion. Scandinavian Conference on Image Analysis. Springer, Berlin, Heidelberg, 2003. 363.

杨天杭, 顾明剑, 胡秀清, 吴春强, 漆成莉, 邵春沅. 基于跨平台红外高光谱观测的对流层三维风场测量[J]. 光谱学与光谱分析, 2021, 41(4): 1131. YANG Tian-hang, GU Ming-jian, HU Xiu-qing, WU Chun-qiang, QI Cheng-li, SHAO Chun-yuan. Tropospheric 3D Winds Measurement Based on Cross-Platform Infrared Hyperspectral Observation[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1131.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!