杨天杭 1,2,3顾明剑 1,2,*邵春沅 1,2吴春强 4[ ... ]胡秀清 4
作者单位
摘要
1 中国科学院红外探测与成像技术重点实验室,上海 200083
2 中国科学院上海技术物理研究所,上海 200083
3 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
4 国家卫星气象中心 中国遥感卫星辐射测量和定标重点开放实验室,北京 100081
红外高光谱大气探测仪II型(HIRAS-II)是一台傅里叶变换光谱仪,搭载于世界首颗民用晨昏轨道气象卫星FY-3E上,其研制过程在FY-3D/HIRAS-I产品基础上,重点提升了探测器灵敏度、光谱和辐射定标精度等方面。仪器发射前进行了全面的热真空定标试验,其中非线性订正作为辐射定标过程的重要环节,对辐射定标精度具有重要影响。针对HIRAS-II长波和中波1红外探测器产生的非线性效应,通过缩放带内光谱对原始数据作非线性订正,采用最小化不同温度点复原光谱各波数点的响应度分布和最小化变温黑体定标偏差分布两种方法推导非线性系数。对比辐射定标数据作非线性订正前后的光谱亮温偏差,结果表明,经过非线性订正后的辐射定标精度得到了明显提升。
HIRAS-II 非线性校正 辐射定标 热真空试验 HIRAS-II nonlinearity correction radiometric calibration TVAC tests 
红外与毫米波学报
2022, 41(3): 597
杨天杭 1,2,3,*顾明剑 1,2胡秀清 4吴春强 4[ ... ]邵春沅 1,2
作者单位
摘要
1 中国科学院红外探测与成像技术重点实验室, 上海 200083
2 中国科学院上海技术物理研究所, 上海 200083
3 中国科学院大学, 北京 100049
4 国家卫星气象中心中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
精确的风场数据对提高数值天气预报准确性具有重要意义, 对流层风是改进天气预报的要素之一。 虽然利用气象卫星成像仪对连续云图追踪特征目标进行导风是一种有效的风场观测方法, 且在区域和全球尺度上改善了数值天气预报, 但仍存在风场高度分配模糊问题而产生误差。 星基红外高光谱探测仪具备大气温湿度廓线垂直探测能力, 通过分析各个垂直分层内的大气参数运动得到三维风场, 能够提升风场垂直高度的准确性, 改进风场高度分配模糊问题。 提出了利用跨平台极轨气象卫星FY-3D星红外高光谱大气探测仪HIRAS和NOAA-20星跨轨红外探测仪CrIS交叉观测对流层三维风场的创新方法, 根据两仪器近重叠轨道星下点交叉观测辐射数据匹配水汽通道图像, 通过稠密光流法分析目标运动变化并计算风场, 对风矢量进行质量控制后同ERA-Interim再分析资料作定量化比较, 分析风速均值绝对偏差、 均方根误差和风向均值绝对偏差。 分别对2019年2月20日UTC世界时00:00, 06:00, 12:00的HIRAS和CrIS交叉数据计算200, 300, 400, 600, 650和1 000 hPa六组垂直高度风场, 结果表明, 风速范围的变化趋势与再分析资料表现一致, 风速范围随高度降低而减小, 高层对20 m·s-1以上风速更敏感, 地表附近测得风速集中在10 m·s-1以内。 风速均值绝对偏差多数小于3 m·s-1, 最大不超过4 m·s-1, 风速均方根误差多数小于3.5 m·s-1, 最大不超过4.5 m·s-1, 风向均值绝对偏差多数小于30°, 最大不超过40°。 风场误差主要来自仪器自身设计参数不同引入辐射数据的观测偏差, 以及因数据空间分辨率不同导致在图像重投影处理过程中引入的定位偏差。
红外高光谱大气探测仪 对流层三维风场 水汽通道 HIRAS Tropospheric 3D winds Vapor channels 
光谱学与光谱分析
2021, 41(4): 1131
作者单位
摘要
1 中国科学院上海技术物理研究所中国科学院红外探测与成像重点实验室, 上海 200083
2 国家卫星气象中心中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
红外高光谱大气探测仪是我国第二代极轨气象卫星风云三号 D星搭载的大气探测仪器。干涉图零光程差位置的确定是干涉图叠加和傅里叶变换的前提, 在实际应用中由于仪器自身和环境因素的影响使其确定困难。本文根据红外高光谱大气探测仪的在轨实测数据, 分析了零光程差偏差对数据反演的影响, 分别以最大相关法和定标光谱虚部最小法, 检测干涉图的零光程差位置。干涉图校准后黑体和冷空光谱的相位差在 π附近。定标光谱虚部在 0附近, 仅表征噪声。该方法能够很好地用于风云三号 D星红外高光谱大气探测仪的数据预处理。
傅里叶光谱仪 复数定标 零光程差 虚部 Fourier spectrometer complex calibration zero optical path difference imaginary part 
光学 精密工程
2020, 28(12): 2573
刘畅 1,2,3施海亮 1,2,3李志伟 1,3吴春强 4[ ... ]熊伟 1,2,3,*
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
4 国家卫星气象中心中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
针对星载红外傅里叶光谱仪中存在的干涉图条纹计数错误,系统地介绍了其形成原因及对复原光谱的影响,并提出了检测和校正方法。通过对干涉图的偏移相位进行线性拟合,能够精确获得条纹计数误差个数;采用理论仿真验证了所提方法的准确性,误差最低可至1.25%;最后采用实际数据进行验证,验证结果表明所提方法能够达到较好的检测及校正效果。
遥感 高光谱 傅里叶光谱仪 条纹计数错误 相位 
光学学报
2020, 40(16): 1630002
作者单位
摘要
1 中国气象科学研究院 灾害天气国家重点实验室, 北京 100081
2 国家卫星气象中心 中国遥感卫星辐射测量与定标重点开放实验室, 北京 100081
鉴于对高精度高时空分辨率大气探测资料日益增长的科研和业务需求, 我国正大力发展星载红外高光谱探测系统。星载红外高光谱干涉仪光机结构复杂, 仪器状态会显著影响其定标精度。本文通过理论分析和仿真实验, 分别讨论了内黑体发射率、低温黑体发射率、内黑体与环境温度差、非线性系数以及直流电压演算等误差敏感性因子影响辐射定标精度的特征。分析表明: 定标辐射偏差的绝对值与内黑体/低温黑体发射率呈线性关系, 且与内黑体与环境温度差、非线性系数、直流电压呈正相关; 提高内黑体发射率和低温黑体发射率到0.985以上、控制内黑体与环境温度差在0.6 K左右、控制干涉仪的非线性效应系数低于0.04, 这些方案均是实现0.1 K辐射定标精度的必要条件; 辐射定标参数对定标辐射的影响特征结合地面真空实验的定标参数估计, 可以迭代得到已测得和未知的定标参数的最优估计, 从而提高定标精度。本文的研究结果对于红外高光谱干涉仪的参数设计以及辐射定标误差来源的识别和订正有着十分重要的意义。
红外高光谱干涉仪 辐射定标 敏感性因子 仿真分析 infrared hyperspectral interferometer radiometric calibration sensitivity factor simulation analysis 
光学 精密工程
2020, 28(4): 867
作者单位
摘要
1 中国气象科学研究院 灾害天气国家重点实验室, 北京 100081
2 国家卫星气象中心 中国遥感卫星辐射测量与定标重点开放实验室, 北京 100081
风云三号D星(FY-3D)于2017年11月15日成功发射, 搭载了国内第一颗自主研制的极轨红外高光谱大气探测仪(High-spectral Resolution Infrared Atmospheric Sounder, HIRAS), 数据将在数值天气预报、大气温/湿廓线反演、大气成分探测等方面得到广泛应用。为满足高精度的探测能力需求, HIRAS的光谱分辨率达到0.625 cm-1, 辐射定标精度要求达到1.0 K, 光谱定标精度要求达到10×10-6, 均为目前国内星载红外仪器最高精度指标。由于光谱频率的精确性会直接影响辐射精度, 红外干涉仪器在数据应用之前必须进行光谱定标精度的精确评估和监测。以晴空视场下的高精度逐线辐射传输模拟光谱作为参考基准, 利用互相关法计算光谱频率偏差, 对发射后的HIRAS在轨数据的光谱定标精度进行了全面评估和验证研究。HIRAS在长波、中波1和中波2的光谱精度达到3×10-6, 其中长波和中波1光谱偏差标准差小于2×10-6, 远优于仪器设计指标要求; 长期的光谱精度稳定性显示HIRAS中波1和中波2的光谱定标精度较稳定, 在半年时间内频率变化小于5×10-6, 长波波段在半年的时间内有往负频率偏差变化的趋势, 变化量约为7×10-6, 需要进行持续监测。HIRAS在轨光谱精度可满足后端产品反演和同化用户的使用需求。
光学遥感 晴空检测 光谱精度 逐线积分辐射传输模式 optical remote sensing clear pixel detection spectral accuracy line-by-line radiative transfer model 
光学 精密工程
2019, 27(10): 2105
杨天杭 1,2,3胡秀清 4,*徐寒列 4吴春强 4[ ... ]顾明剑 1,3
作者单位
摘要
1 中国科学院红外探测与成像技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院上海技术物理研究所, 上海 200083
4 国家卫星气象中心中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081
红外高光谱探测仪的高精度辐射定标是其定量化应用的关键。基于欧洲气象卫星MetOp-A/B星红外大气探测干涉仪(IASI)与风云三号D星(FY-3D),采用瞬时星下点交叉比对方法,评估FY-3D搭载的红外高光谱大气探测仪(HIRAS)辐射定标的相对偏差。根据两个仪器严格的空间和时间匹配观测数据,采用与FY-3D同一平台但空间分辨率更高的中分辨率光谱成像仪MERSI-II的数据,筛选匹配样本的均匀背景。在交叉比对前,将IASI数据光谱分辨率用傅里叶正逆变换转换为与HIRAS相同的光谱分辨率。由于满足匹配规则的比对样本基本分布在目标温度较低的南北极区域,因此用光谱亮温的平均偏差和偏差标准差评价交叉比对结果。结果表明,HIRAS与MetOp-A/B星的IASI比对结果相似,在相对温度较高的北极区域的一致性整体优于南极区域。低温目标环境下,长波、中波红外的亮温平均偏差小于1 K,多数通道小于0.5 K,一致性良好,各通道无明显温度依赖,偏差标准差小于2 K,且随光谱通道而变,在吸收线剧烈的位置处稍大。短波红外HIRAS光谱的亮温整体低于IASI光谱,多数通道的平均偏差小于1.5 K,偏差对温度的依赖较明显,偏差标准差随目标温度升高而减小。亮温偏差长期趋势(2018年4—12月)的分析表明,其长期整体稳定,短波偏差在较低目标温度下稍大。
光谱学 交叉比对 红外高光谱大气探测仪 低温目标 辐射一致性 
光学学报
2019, 39(11): 1130003
作者单位
摘要
1 国家卫星气象中心 中国遥感卫星辐射测量与定标重点开放实验室, 北京 100081
2 中国气象科学研究院, 北京 100081
3 中国科学院 上海技术物理研究所, 上海 210083
风云三号D星(FY-3D)于2017年11月15日成功发射, 是我国第二代极轨气象卫星, 其上搭载了红外高光谱大气探测仪(HIRAS), 实现了地气系统的高光谱分辨率红外高精度观测, 由于光谱频率的精确性会直接影响辐射精度, 红外干涉仪器必须进行逐通道的光谱定标。首先对干涉图数据进行傅里叶变换获得粗定标结果, 再基于仪器参数计算仪器线型函数, 进行光谱精校正, 开发了风云三号D星HIRAS的光谱定标技术, 并用发射前和在轨数据进行了精度验证。光谱定标方法能有效订正由于仪器离轴探元设计引起的光谱位置偏差, 基于地面单色激光测量数据验证, 长波4个探元20×10-6左右的偏差可订正到0.5×10-6(1和2探元)和7×10-6(3和4探元)以内; 中波1四个探元50×10-6左右的偏差可分别订正到6×10-6(1和3探元)、8×10-6(2探元)和13×10-6(4探元)以内; 基于在轨数据验证三个波段光谱订正后光谱精度偏差和标准差均可达到5×10-6以内。三个波段光谱定标结果均满足卫星使用技术指标10×10-6的要求, 有效保证了辐射精度评估和后端遥感产品开发应用的要求。
光谱定标 红外高光谱大气探测仪 离轴效应 spectral calibration High-spectral Resolution Infrared Atmospheric Soun off-axis effects LBLRTM LBLRTM 
光学 精密工程
2019, 27(4): 747

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!