激光与光电子学进展, 2012, 49 (9): 090005, 网络出版: 2012-06-27  

大功率CO2激光器倍频晶体综述 下载: 586次

Review of Frequency Doubling Crystal in High Power CO2 Lasers
作者单位
北京工业大学激光工程研究院, 北京 100124
引用该论文

罗旭, 冯驰, 陈欣, 惠勇凌, 姜梦华, 雷訇, 李强. 大功率CO2激光器倍频晶体综述[J]. 激光与光电子学进展, 2012, 49(9): 090005.

Luo Xu, Feng Chi, Chen Xin, Hui Yongling, Jiang Menghua, Lei Hong, Li Qiang. Review of Frequency Doubling Crystal in High Power CO2 Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090005.

参考文献

[1] Irina T. Sorokina, Konstantin L. Vodopyanov. Solid-State Mid-Infrared Laser Sources[M]. Berlin: Springer, 2003. 1~3

[2] 周乐平, 唐大伟, 杜小泽 等. 大功率激光武器及其冷却系统[J]. 激光与光电子学进展, 2007, 44(8): 34~38

    Zhou Leping, Tang Dawei, Du Xiaoze et al.. High power laser weapons and their cooling systems[J]. Laser & Optoelectronics Progress, 2007, 44(8): 34~38

[3] 任国光. 自由电子激光器为广泛应用开启大门[J]. 激光与光电子学进展, 2005, 42(1): 3~6

    Yen Guoguang. FEL opened door for extensive applications[J]. Laser & Optoelectronics Progress, 2005, 42(1): 3~6

[4] Igor V. Adamovich, Matthew Goshe, Walter R. Lempert et al.. Continuous wave, electrically excited, carbon monoxide laser operating on first overtone infrared bands: 2.5~4.0 microns, kinetic modeling and design[C]. SPIE, 2004, 5448: 322~343

[5] 于清旭, 韩瑞萍, 宋昌烈 等. CO激光器Δν=2受激跃迁小信号增益系数的计算[J]. 光电子·激光, 2001, 12(1): 10~13

    Yu Qingxu, Han Ruiping, Song Changlie et al.. Computation of small signal gain coefficients for Δν=2 stimulated emission in CO lasers[J]. J. Optoelectronics Laser, 2001, 12(1): 10~13

[6] N. Bandyopadhyay, B. Gokden, A. Myzaferi et al.. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ 3.76 μm[J]. Appl. Phys. Lett., 2010, 97(13): 131117

[7] Shigeki Tokita, Masanao Murakami, Seiji Shimizu et al.. Liquid-cooled 24 W mid-infrared ErZBLAN fiber laser[J]. Opt. Lett., 2009, 34(20): 3062~3064

[8] 邓颖, 朱启华, 曾小明 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子学进展, 2006, 43(8): 21~26

    Deng Ying, Zhu Qihua, Zeng Xiaoming et al.. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress,2006, 43(8): 21~26

[9] Peter G. Schunemann. Advances in mid-IR materials[C]. CLEO, 2007, CThL3

[10] W. B. Gandrud, R. L. Abrarns. Reduction in SHG efficiency in tellurium by photo-induced carriers[C]. 1970 International Electron Devices Meeting, 1970, 16: 94

[11] R. C. Eckardt, Y. X. Fan, R. L. Byer et al.. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

[12] L. Isaenko, P. Krinitsin, V. Vedenyapin et al.. LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR[J]. Crystal Growth & Design, 2005, 5(4): 1325~1329

[13] D. R. Suhre, L. H. Taylor. Six-watt mid-infrared laser using harmonic generation with Tl3AsSe3[J]. Appl. Phys. B, 1996, 63(3): 225~228

[14] 尼科咯相. 非线性光学晶体: 一份完整的总结[M]. 王继杨 译. 北京: 高等教育出版社, 2009. 91~107, 243~255, 309~323, 437~456

    David N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey[M]. Wang Jiyang Transl.. Beijing: Higher Education Press, 2009. 91~107, 243~255, 309~323, 437~456

[15] T. Skauli, K. L. Vodopyanov, T. J. Pinguet et al.. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Opt. Lett., 2002, 27(8): 628~630

[16] Yuri M. Andreev, Pavel P. Geikoa, V. Valeri et al.. Parametric frequency converters with LiInSe2, AgGaGeS4, HgGa2S4 and Hg0.65Cd0.35Ga2S4 crystals[C]. SPIE, 2003, 5027: 120~127

[17] 黄金哲, 任德明, 胡孝勇 等. 掺杂晶体Cd0.35Hg0.65Ga2S4的光学特性[J]. 物理学报, 2004, 53(11): 3761~3765

    Huang Jinzhe, Ren Deming, Hu Xiaoyong et al.. Nonlinear optical properties of mixed Cd0.35Hg0.65Ga2S4 crystal[J]. Acta Physica Sinica, 2004, 53(11): 3761~3765

[18] V. V. Badikov, V. I. Chatterjee, P. K. Datta et al.. Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal[J]. Appl. Phys. Lett., 1993, 63(10): 1316~1318

[19] Michael M. Tilleman. Optimal frequency doubling of a transferred-electron amplifier CO2 laser[J]. Opt. Engng., 2000, 39(3): 758~762

[20] L. A. Eyres, P. J. Tourreau, T. J. Pinguet et al.. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion[J]. Appl. Phys. Lett., 2001, 79(7): 904~906

[21] S. Das, C. Ghosh, S. Gangopadhyay. A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals[J]. Infrared Physics & Technology, 2007, 51(1): 9~12

[22] Deming Ren, Jinzhe Huang, Xiaoyong Hu et al.. Efficient CO2 frequency doubling with Hg1-xCdxGa2S4[C]. SPIE, 2004, 5397: 205~211

[23] 朱世富, 李正辉, 赵北君 等. 硒镓银单晶体的生长及其应用[J]. 人工晶体学报, 1993, 22(3): 296~299

    Zhu Shifu, Li Zhenghui, Zhao Beijun et al.. Crystal growth of silver selenogallate and application[J]. J. Synthetic Crystals, 1993, 22(3): 296~299

[24] 吴海信, 倪友保, 耿磊 等. 红外非线性晶体ZnGeP2的生长及品质研究[J]. 人工晶体学报, 2007, 36(3): 507~511

    Wu Haixin, Ni Youbao, Geng Lei et al.. Investigation of infrared nonlinear crystal material ZnGeP2[J]. J. Synthetic Crystals, 2007, 36(3): 507~511

[25] F. Rotermund, V. Petrov. Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Crforsterite regenerative amplifier[J]. Opt. Lett., 2000, 25(10): 746~748

[26] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

[27] D. E. Thompson, J. D. McMullen, D. B. Anderson. Second-harmonic generation in GaAs "stack of plates" using high-power CO2 laser radiation[J]. Appl. Phys. Lett., 1976, 29(2): 113~115

[28] L. Becouarn, B. Gerard, M. Brévignon et al.. Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy[J]. Electron. Lett.,1998, 34(25): 2409~2410

[29] Leonel P. Gonzalez, Derek C. Upchurch, Peter G. Schunemann et al.. Continuous-wave second harmonic generation of a tunable CO2 laser in orientation-patterned GaAs[C].QELS, 2011, JThB74

[30] Walter C. Hurlbut, Vladimir G. Kozlova, Konstantin Vodopyanov. THz-wave generation inside a high-finesse ring-cavity OPO pumped by a fiber laser[C]. SPIE, 2011, 7582: 75820Z

[31] L. Gordon, G. L. Woods, R. C. Eckardt et al.. Diffusion-bonded stacked GaAs for quasi-phase-matched second harmonic generation of a carbon dioxide laser[J]. Electron. Lett., 1993, 29(22): 1942~1944

[32] D. Zheng, L. A. Gordon, Y. S. Wu et al.. Diffusion bonding of GaAs wafers for nonlinear optics applications[J]. J. Electrochem. Soc., 1997, 144(4): 1439~1441

[33] K. L. Vodopyanov. Terahertz-wave generation with periodically inverted gallium arsenide[J]. Laser Physics, 2009, 19(2): 305~321

[34] Brian J. Perrett, Paul D. Mason, Pamela A. Webber et al.. Optical parametric amplification of mid-infrared radiation using multi-layer glass-bonded QPM GaAs crystals[C]. SPIE, 2007, 6455: 64550A

[35] N. Razek, K. Otte, T. Chasse et al.. GaAs surface cleaning by low energy hydrogen ion beam treatment[J]. J. Vac. Sci. Technol., 2002, 20(4): 1492~1497

[36] R. L. Byer, M. M. Choy, R. L. Herbst et al.. Second harmonic generation and infrared mixing in AgGaSe2[J]. Appl. Phys. Lett., 1974, 24(2): 65~68

[37] R. C. Eckardt, Y. X. Fan, J. Van der Laan. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

[38] 程干超, 张明月, 杨琳 等. 可调谐TEA CO2激光在AgGaSe2中的倍频[J]. 量子电子学报, 1997, 14(2): 166~169

    Cheng Ganchao, Zhang Mingyue, Yang Lin et al.. Frequency doubling of tunable TEA CO2 laser radiation in AgGaSe2[J]. Chinese J. Quantum Electronics, 1997, 14(2): 166~169

[39] David A. Russell, Reinhard Ebert. Efficient generation and heterodyne detection of 4.75 μm light with second-harmonic generation[J]. Appl. Opt., 1993, 32(33): 6638~6644

[40] Yu M. Andreev, V. Yu. Baranov, V. G. Voevodin et al.. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J]. Sov. J. Quantum Electron., 1987, 17(11): 1435~1436

[41] D. J. Li, J. Guo, G. L. Yang et al.. High power 4.65 μm single-wavelength laser by second-harmonic generation of pulsed TEA CO2 laser in AgGaSe2 and ZnGeP2[J]. Laser Physics, 2012, 22(4): 725~729

[42] G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev et al.. Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal[J]. Sov. J. Quantum Electron., 1989, 19(4): 494~498

[43] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

[44] K. Kato, E. Takaoka, N. Umemura. High efficiency 90° phase matched SHG at 5.2955 μm in AgGaxInxSe2[C]. CLEO, 2002, CTuM14

[45] E. Lallier, M. Brevignon, J. Lehoux. Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal[J]. Opt. Lett., 1998, 23(19): 1511~1513

罗旭, 冯驰, 陈欣, 惠勇凌, 姜梦华, 雷訇, 李强. 大功率CO2激光器倍频晶体综述[J]. 激光与光电子学进展, 2012, 49(9): 090005. Luo Xu, Feng Chi, Chen Xin, Hui Yongling, Jiang Menghua, Lei Hong, Li Qiang. Review of Frequency Doubling Crystal in High Power CO2 Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!