激光与光电子学进展, 2012, 49 (9): 090005, 网络出版: 2012-06-27  

大功率CO2激光器倍频晶体综述 下载: 586次

Review of Frequency Doubling Crystal in High Power CO2 Lasers
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
介绍了中红外激光的产生方式以及各种中红外激光器的特点。结合CO2激光器倍频产生中红外的优点,重点讨论了CO2激光器倍频晶体的性能。对常用的双折射相位匹配(BPM)倍频晶体和准相位匹配(QPM)倍频晶体性能进行了比较分析。展望了高功率CO2倍频激光器的发展需要解决的问题及可能的技术途径。
Abstract
The methods to produce mid-infrared lasers and the features of different mid-infrared lasers are introduced. Combined with the advantages of the second harmonic generation in CO2 laser, the performance of frequency doubling crystals in the CO2 laser are mainly discussed. The performances of the most widely used birefringent phase matching (BPM) and quasi phase matching (QPM) frequency doubling crystals are compared and analyzed. The problems and probable techniques for the development of second harmonic generation in CO2 laser are previewed.
参考文献

[1] Irina T. Sorokina, Konstantin L. Vodopyanov. Solid-State Mid-Infrared Laser Sources[M]. Berlin: Springer, 2003. 1~3

[2] 周乐平, 唐大伟, 杜小泽 等. 大功率激光武器及其冷却系统[J]. 激光与光电子学进展, 2007, 44(8): 34~38

    Zhou Leping, Tang Dawei, Du Xiaoze et al.. High power laser weapons and their cooling systems[J]. Laser & Optoelectronics Progress, 2007, 44(8): 34~38

[3] 任国光. 自由电子激光器为广泛应用开启大门[J]. 激光与光电子学进展, 2005, 42(1): 3~6

    Yen Guoguang. FEL opened door for extensive applications[J]. Laser & Optoelectronics Progress, 2005, 42(1): 3~6

[4] Igor V. Adamovich, Matthew Goshe, Walter R. Lempert et al.. Continuous wave, electrically excited, carbon monoxide laser operating on first overtone infrared bands: 2.5~4.0 microns, kinetic modeling and design[C]. SPIE, 2004, 5448: 322~343

[5] 于清旭, 韩瑞萍, 宋昌烈 等. CO激光器Δν=2受激跃迁小信号增益系数的计算[J]. 光电子·激光, 2001, 12(1): 10~13

    Yu Qingxu, Han Ruiping, Song Changlie et al.. Computation of small signal gain coefficients for Δν=2 stimulated emission in CO lasers[J]. J. Optoelectronics Laser, 2001, 12(1): 10~13

[6] N. Bandyopadhyay, B. Gokden, A. Myzaferi et al.. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ 3.76 μm[J]. Appl. Phys. Lett., 2010, 97(13): 131117

[7] Shigeki Tokita, Masanao Murakami, Seiji Shimizu et al.. Liquid-cooled 24 W mid-infrared ErZBLAN fiber laser[J]. Opt. Lett., 2009, 34(20): 3062~3064

[8] 邓颖, 朱启华, 曾小明 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子学进展, 2006, 43(8): 21~26

    Deng Ying, Zhu Qihua, Zeng Xiaoming et al.. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress,2006, 43(8): 21~26

[9] Peter G. Schunemann. Advances in mid-IR materials[C]. CLEO, 2007, CThL3

[10] W. B. Gandrud, R. L. Abrarns. Reduction in SHG efficiency in tellurium by photo-induced carriers[C]. 1970 International Electron Devices Meeting, 1970, 16: 94

[11] R. C. Eckardt, Y. X. Fan, R. L. Byer et al.. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

[12] L. Isaenko, P. Krinitsin, V. Vedenyapin et al.. LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR[J]. Crystal Growth & Design, 2005, 5(4): 1325~1329

[13] D. R. Suhre, L. H. Taylor. Six-watt mid-infrared laser using harmonic generation with Tl3AsSe3[J]. Appl. Phys. B, 1996, 63(3): 225~228

[14] 尼科咯相. 非线性光学晶体: 一份完整的总结[M]. 王继杨 译. 北京: 高等教育出版社, 2009. 91~107, 243~255, 309~323, 437~456

    David N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey[M]. Wang Jiyang Transl.. Beijing: Higher Education Press, 2009. 91~107, 243~255, 309~323, 437~456

[15] T. Skauli, K. L. Vodopyanov, T. J. Pinguet et al.. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Opt. Lett., 2002, 27(8): 628~630

[16] Yuri M. Andreev, Pavel P. Geikoa, V. Valeri et al.. Parametric frequency converters with LiInSe2, AgGaGeS4, HgGa2S4 and Hg0.65Cd0.35Ga2S4 crystals[C]. SPIE, 2003, 5027: 120~127

[17] 黄金哲, 任德明, 胡孝勇 等. 掺杂晶体Cd0.35Hg0.65Ga2S4的光学特性[J]. 物理学报, 2004, 53(11): 3761~3765

    Huang Jinzhe, Ren Deming, Hu Xiaoyong et al.. Nonlinear optical properties of mixed Cd0.35Hg0.65Ga2S4 crystal[J]. Acta Physica Sinica, 2004, 53(11): 3761~3765

[18] V. V. Badikov, V. I. Chatterjee, P. K. Datta et al.. Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal[J]. Appl. Phys. Lett., 1993, 63(10): 1316~1318

[19] Michael M. Tilleman. Optimal frequency doubling of a transferred-electron amplifier CO2 laser[J]. Opt. Engng., 2000, 39(3): 758~762

[20] L. A. Eyres, P. J. Tourreau, T. J. Pinguet et al.. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion[J]. Appl. Phys. Lett., 2001, 79(7): 904~906

[21] S. Das, C. Ghosh, S. Gangopadhyay. A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals[J]. Infrared Physics & Technology, 2007, 51(1): 9~12

[22] Deming Ren, Jinzhe Huang, Xiaoyong Hu et al.. Efficient CO2 frequency doubling with Hg1-xCdxGa2S4[C]. SPIE, 2004, 5397: 205~211

[23] 朱世富, 李正辉, 赵北君 等. 硒镓银单晶体的生长及其应用[J]. 人工晶体学报, 1993, 22(3): 296~299

    Zhu Shifu, Li Zhenghui, Zhao Beijun et al.. Crystal growth of silver selenogallate and application[J]. J. Synthetic Crystals, 1993, 22(3): 296~299

[24] 吴海信, 倪友保, 耿磊 等. 红外非线性晶体ZnGeP2的生长及品质研究[J]. 人工晶体学报, 2007, 36(3): 507~511

    Wu Haixin, Ni Youbao, Geng Lei et al.. Investigation of infrared nonlinear crystal material ZnGeP2[J]. J. Synthetic Crystals, 2007, 36(3): 507~511

[25] F. Rotermund, V. Petrov. Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Crforsterite regenerative amplifier[J]. Opt. Lett., 2000, 25(10): 746~748

[26] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

[27] D. E. Thompson, J. D. McMullen, D. B. Anderson. Second-harmonic generation in GaAs "stack of plates" using high-power CO2 laser radiation[J]. Appl. Phys. Lett., 1976, 29(2): 113~115

[28] L. Becouarn, B. Gerard, M. Brévignon et al.. Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy[J]. Electron. Lett.,1998, 34(25): 2409~2410

[29] Leonel P. Gonzalez, Derek C. Upchurch, Peter G. Schunemann et al.. Continuous-wave second harmonic generation of a tunable CO2 laser in orientation-patterned GaAs[C].QELS, 2011, JThB74

[30] Walter C. Hurlbut, Vladimir G. Kozlova, Konstantin Vodopyanov. THz-wave generation inside a high-finesse ring-cavity OPO pumped by a fiber laser[C]. SPIE, 2011, 7582: 75820Z

[31] L. Gordon, G. L. Woods, R. C. Eckardt et al.. Diffusion-bonded stacked GaAs for quasi-phase-matched second harmonic generation of a carbon dioxide laser[J]. Electron. Lett., 1993, 29(22): 1942~1944

[32] D. Zheng, L. A. Gordon, Y. S. Wu et al.. Diffusion bonding of GaAs wafers for nonlinear optics applications[J]. J. Electrochem. Soc., 1997, 144(4): 1439~1441

[33] K. L. Vodopyanov. Terahertz-wave generation with periodically inverted gallium arsenide[J]. Laser Physics, 2009, 19(2): 305~321

[34] Brian J. Perrett, Paul D. Mason, Pamela A. Webber et al.. Optical parametric amplification of mid-infrared radiation using multi-layer glass-bonded QPM GaAs crystals[C]. SPIE, 2007, 6455: 64550A

[35] N. Razek, K. Otte, T. Chasse et al.. GaAs surface cleaning by low energy hydrogen ion beam treatment[J]. J. Vac. Sci. Technol., 2002, 20(4): 1492~1497

[36] R. L. Byer, M. M. Choy, R. L. Herbst et al.. Second harmonic generation and infrared mixing in AgGaSe2[J]. Appl. Phys. Lett., 1974, 24(2): 65~68

[37] R. C. Eckardt, Y. X. Fan, J. Van der Laan. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

[38] 程干超, 张明月, 杨琳 等. 可调谐TEA CO2激光在AgGaSe2中的倍频[J]. 量子电子学报, 1997, 14(2): 166~169

    Cheng Ganchao, Zhang Mingyue, Yang Lin et al.. Frequency doubling of tunable TEA CO2 laser radiation in AgGaSe2[J]. Chinese J. Quantum Electronics, 1997, 14(2): 166~169

[39] David A. Russell, Reinhard Ebert. Efficient generation and heterodyne detection of 4.75 μm light with second-harmonic generation[J]. Appl. Opt., 1993, 32(33): 6638~6644

[40] Yu M. Andreev, V. Yu. Baranov, V. G. Voevodin et al.. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J]. Sov. J. Quantum Electron., 1987, 17(11): 1435~1436

[41] D. J. Li, J. Guo, G. L. Yang et al.. High power 4.65 μm single-wavelength laser by second-harmonic generation of pulsed TEA CO2 laser in AgGaSe2 and ZnGeP2[J]. Laser Physics, 2012, 22(4): 725~729

[42] G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev et al.. Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal[J]. Sov. J. Quantum Electron., 1989, 19(4): 494~498

[43] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

[44] K. Kato, E. Takaoka, N. Umemura. High efficiency 90° phase matched SHG at 5.2955 μm in AgGaxInxSe2[C]. CLEO, 2002, CTuM14

[45] E. Lallier, M. Brevignon, J. Lehoux. Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal[J]. Opt. Lett., 1998, 23(19): 1511~1513

罗旭, 冯驰, 陈欣, 惠勇凌, 姜梦华, 雷訇, 李强. 大功率CO2激光器倍频晶体综述[J]. 激光与光电子学进展, 2012, 49(9): 090005. Luo Xu, Feng Chi, Chen Xin, Hui Yongling, Jiang Menghua, Lei Hong, Li Qiang. Review of Frequency Doubling Crystal in High Power CO2 Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!