光学 精密工程, 2017, 25 (6): 1433, 网络出版: 2017-07-10   

温度自补偿高灵敏度非本征光纤珐珀横向负载传感器

Transverse load sensor based on optical fiber extrinsic Fabry-Perot interferometer with high sensitivity and temperature self-compensation
作者单位
1 安徽工业大学 电气与信息工程学院, 安徽 马鞍山 243000
2 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
摘要
为了提高光纤EFPI传感器的灵敏度, 提出了一种新型EFPI传感结构, 并对其温度特性以及横向负载特性进行了研究。首先, 介绍了采用端面镀钯金膜的光纤EFPI传感器的结构及其制作方法; 接着, 建立了镀钯金膜光纤EFPI的温度传感模型, 并通过Solidworks、Hypermesh与有限元分析软件ANSYS联合仿真, 对它在不同受压力下进行理论模拟, 获得了腔长变化与压力之间的关系; 最后, 对传统的光纤EFPI与镀钯金膜光纤EFPI的温度和横向负载特性进行了对比试验。试验结果表明, 镀钯金膜光纤EFPI的温度灵敏度为6.083 pm/℃, 具有温度自补偿特性; 它对横向负载的检测灵敏度可达40.83 m/g, 相对于传统的光纤EFPI横向负载的灵敏度提高了2.10倍。实验结果与理论分析相符合, 为实际制作具有温度自补偿的高灵敏度光纤EFPI传感器提供了理论与实验依据。
Abstract
In order to improve the sensitivity of optical fiber EFPI sensors, a novel EFPI sensor structure was proposed, and its characteristics of temperature and transverse load were studied. Firstly, the structure and fabrication of the optical fiber EFPI sensor with its edge coated with palladium-gold were introduced. Then, the temperature sensing model of fiber optic EFPI coated with palladium-gold was established, and the relationship between change of cavity length and pressure was obtained in theoretical simulation of the sensor under different pressures by Solidworks, Hypermesh and finite element analysis software ANSYS. Finally, the comparison of temperature and transverse load characteristics between the traditional optical fiber EFPI and the palladium-gold coated optical fiber EFPI was implemented. Experimental results show that the temperature sensitivity of the palladium-gold coated optical fiber EFPI is 6.083 pm/℃ due to its characteristic of temperature self-compensation. Moreover, the detection sensitivity of transverse load can reach 40.83 m/g, which has been improved by 2.10 times compared with the one of the traditional optical fiber EFPI. The experimental results coincide with the theoretical analysis, providing theoretical and experimental evidences for the production of optical fiber EFPI with high sensitivity and temperature self-compensation practically.
参考文献

[1] 卢一鑫, 杨璐娜. 光纤传感器的应用现状及未来发展趋势[J]. 科技信息, 2011(3): 113-114.

    LU Y X, YANG L N. Development and applications of optical fiber sensor[J]. Science & Technology Information, 2011(3): 113-114. (in Chinese)

[2] 吴飞, 李立新, 李亚萍, 等. 光纤Bragg光栅横向局部受力特性的研究[J]. 光电子·激光, 2005, 16(11): 1270-1273.

    WU F, LI L X, LI Y P, et al.. Study of fiber Bragg grating characterization by transverse force to a small grating section[J]. Journal of Optoelectronics·Laser, 2005, 16(11): 1270-1273. (in Chinese)

[3] 王义平, 饶云江. 新型长周期光纤光栅的横向负载特性及其偏振相关性研究[J]. 光子学报, 2005, 34(8): 1195-1200.

    WANG Y P, RAO Y J. Study on transverse-load characteristics and polarization dependence of novel long period fiber gratings[J]. Acta Photonica Sinica, 2005, 34(8): 1195-1200. (in Chinese)

[4] 曾祥楷, 饶云江, 梁快. 长周期光纤光栅谐振波长的横向负载特性分析[J]. 光学学报, 2011, 31(1): 0106002.

    ZENG X K, RAO Y J, LIANG K. Characteristic analysis of LPFG resonance wavelength shift owing to transverse load[J]. Acta Optica Sinica, 2011, 31(1): 0106002. (in Chinese)

[5] 刘宏月, 梁大开, 韩晓林. 基于长周期光纤光栅横向负载特性的混凝土结构钢筋锈蚀监测[J]. 光学学报, 2013, 33(4): 0406003.

    LIU H Y, LIANG D K, HAN X L. Long-period fiber grating transverse load effect-based sensors for rebar corrosion in concrete[J]. Acta Optica Sinica, 2013, 33(4): 0406003. (in Chinese)

[6] YANG R, YU Y S, ZHU C C, et al.. PDMS-coated S-tapered fiber for highly sensitive measurements of transverse load and temperature[J]. IEEE Sensors Journal, 2015, 15(6): 3429-3435.

[7] ZULKIFLI A Z, MASNAN S E F, AZMI N M, et al.. A simple load sensor based on a bent single-mode-multimode-single-mode fiber structure[J]. Sensors and Actuators A: Physical, 2016, 242: 106-110.

[8] MURPHY K A, GUNTHER M F, VENGSARKAR A M, et al.. Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft[J]. Applied Optics, 1992, 31(4): 431-433.

[9] 赵子文, 王为宇, 张敏, 等. 通过改进非本征法布里-珀罗干涉型光纤传感器结构实现温度补偿的新方法[J]. 激光与光电子学进展, 2013,50(9): 090605.

    ZHAO Z W, WANG W Y, ZHANG M, et al.. A new temperature compensation method by optimizing the structure of extrinsic Fabry-Perot interferometric optical fiber sensor[J]. Laser & Optoelectronics Progress, 2013, 50(9): 090605. (in Chinese)

[10] 王彦, 赵凯, 刘加萍. 基于体相位光栅色散解调的布拉格光纤光栅温度监测[J]. 激光与光电子学进展, 2016,53(10): 101202.

    WANG Y, ZHAO K, LIU J P. Optical fiber Bragg grating temperature monitoring based on volume phase grating dispersion demodulation[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101202. (in Chinese)

[11] 张雨彤, 肖尚辉, 江艳, 等. 一种基于DSP的便携式光纤EFPI传感器解调仪[J]. 光学技术, 2015, 41(6): 485-488.

    ZHANG Y T, XIAO SH H, JIANG Y, et al.. A DSP based portable demodulator for the measurement of optical fiber EFPI sensors[J]. Optical Technique, 2015, 41(6): 485-488. (in Chinese)

[12] CHEN K, ZHOU X L, YANG B K, et al.. A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements[J]. Optics & Laser Technology, 2015, 73: 82-87.

[13] 于清旭, 贾春艳. 膜片式微型F-P腔光纤压力传感器[J]. 光学 精密工程, 2009, 17(12): 2887-2892.

    YU Q X, JIA CH Y. Diaphragm based miniature fiber optic pressure sensor with F-P cavity[J]. Opt. Precision Eng., 2009, 17(12): 2887-2892. (in Chinese)

[14] 吴入军, 郑百林, 贺鹏飞, 等. 埋入式光纤布拉格光栅传感器封装结构对测量应变的影响[J]. 光学 精密工程, 2014, 22(1): 24-30.

    WU R J, ZHENG B L, HE P F, et al.. Influence of encapsulation structures for embedded fiber-optic Bragg grating sensors on strain measurement[J]. Opt. Precision Eng., 2014, 22(1): 24-30. (in Chinese)

[15] PODDAR G C, KUMAR A, DAS S, et al.. Fiber optic extrinsic Fabry-Perot interferometric sensor for high blast pressure measurement[J]. Indian Journal of Pure & Applied Physics, 2015, 53(9): 573-578.

王彦, 刘加萍, 刘吉虹, 赵凯, 梁大开. 温度自补偿高灵敏度非本征光纤珐珀横向负载传感器[J]. 光学 精密工程, 2017, 25(6): 1433. WANG Yan, LIU Jia-ping, LIU Ji-hong, ZHAO Kai, LIANG Da-kai. Transverse load sensor based on optical fiber extrinsic Fabry-Perot interferometer with high sensitivity and temperature self-compensation[J]. Optics and Precision Engineering, 2017, 25(6): 1433.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!