强激光与粒子束, 2015, 27 (7): 071001, 网络出版: 2015-07-10  

R600a喷雾冷却系统换热过程

Heat transfer process of R600a spray cooling system
作者单位
1 热力过程节能技术北京市重点实验室(中国科学院理化技术研究所), 北京 100190
2 中原工学院 能源与环境学院, 郑州 450007
3 国内贸易设计研究院, 北京 100069
摘要
以R600a压力式封闭系统喷雾冷却过程为研究对象,对其换热过程进行分析.对液滴撞击热面后的状态进行建模,分析了其运动状态.通过忽略液膜的对流换热,引入韦伯数来简化并修正雾滴与热源表面的对流换热系数关联式;借鉴二次成核理论,通过单位时间内,单位面积上覆盖的雾滴数量对核态沸腾换热系数关联式修正.通过上述分析,以对流换热和核态沸腾换热两种机理为中心,建立了新的换热系数关联式.通过与其他文献的关联式、实验测量值进行比较、不同工质进行比较、不同实验系统比较,发现该式预测值和实验测量值偏差在±20%以内,能够很好地预测压力式封闭系统喷雾冷却过程的换热系数.
Abstract
A closed pressure atomization spray cooling system with R600a was used to study the heat transfer process of spray cooling.The modeling of droplets impinging on hot surface was built and the moving state was analyzed.The convective heat transfer of liquid film was ignored and Weber number was used to amend the heat transfer convection coefficient between the droplets and the heater surface.Furthermore,the theory of secondary nucleate boiling was referenced to amend empirical correlation of nucleate boiling.Based on the above analysis,empirical correlations of heat transfer coefficient were built by considering the convection and nucleate boiling.By comparing to the correlations and experimental measurements of other researchers,and comparing to different coolants and experimental systems,we found that the errors of the predicted values and the experimental measurements were within ±20%.So the empirical correlation can well predict the heat transfer coefficient of closed pressure spray cooling system.
参考文献

[1] 陶毓伽,淮秀兰,李志刚,等.大功率固体激光器冷却技术进展[J].激光杂志,2007,28(2):11-12.(Tao Yujia,Huai Xiulan,Li Zhigang,et al.Advancement of cooling techniques in high-power solid state laser.Laser Journal,2007,28(2):11-12)

[2] 田长青,徐洪波,曹宏章,等.高功率固体激光器冷却技术[J].中国激光,2009,36(7):1686-1692.(Tian Changqing,Xu Hongbo,Cao Hongzhang,et al.Cooling technology for high-power solid-state laser.Chinese Journal of Lasers,2009,36(7):1686-1692)

[3] 武德勇,高松信,曹宏章,等.高功率二极管激光器相变冷却技术[J].强激光与粒子束,2013,25(11):2799-2802.(Wu Deyong,Gao Songxin,Cao Hongzhang,et al.Phase transition cooling techniques for high power diode laser.High Power Laser and Particle Beams,2013,25(11):2799-2802)

[4] 杨波,高松信,刘军,等.高功率二极管激光器喷雾冷却实验研究[J].强激光与粒子束,2014,26:071001.(Yang Bo,Gao Songxin,Liu Jun,et al.Spray cooling of high power diode laser.High Power Laser and Particle Beams,2014,26:071001)

[5] Shedd T A.Next generation spray cooling:High heat flux management in compact spaces[J].Heat Transfer Engineering,2007,28(2):87-92.

[6] Pais M R,Chow L C,Mahefkey E T.Surface roughness and its effects on the heat transfer mechanism in spray cooling[J].Journal of Heat Transfer,1992,114(1):211-219.

[7] Grissom W M,Wierum F A.Liquid spray cooling of a heated surface[J].International Journal of Heat and Mass Transfer,1981,24(2):261-270.

[8] Pautsch A G.Heat transfer and film thickness characteristics of spray cooling with phase change[D].Madison:University of Wisconsin,2004.

[9] Hsieh C C.Two-phase transport phenomena in micro fluidic devices[D].Pittsburgh:Carnegie Mellon University,2003.

[10] Yang Jidong,Chow L,Pais M.Nucleate boiling heat transfer in spray cooling[J].Journal of Heat Transfer,1996,118:668-671.

[11] Rini D P,Chen R H,Chow L C.Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J].Journal of Heat Transfer,2002,124:63-72.

[12] Mesler R.Surface roughness and its effects on the heat transfer mechanism of spray cooling[J].Journal of Heat Transfer,1993,115:1083-1085.

[13] Yang J R,Wong S C.On the discrepancies between theoretical and experimental results for microgravity droplet evaporation[J].International Journal of Heat and Mass Transfer,2001,44(23):4433-4443.

[14] 徐洪波,钱春潮,邵双全,等.R600a喷雾冷却系统换热实验研究[J].光学学报,2014,34:s114010.(Xu Hongbo,Qian Chunchao,Shao Shuangquan,et al.Experimental research of R600a heat transfer performance in a closed spray cooling system.Acta Optica Sinica,2014,34:s114010)

[15] Cabrera E,Gonzalez J E.Heat flux correlation for spray cooling in the nucleate boiling regime[J].Experimental Heat Transfer,2003(16):19-44.

[16] Cooper M G.Saturation nucleate pool boiling-A simple correlation[C]//1st U.K.National Conference on Heat Transfer.1984:785-793.

[17] Ciofalo M,Caronia A,Liberto M D,et al.The Nukiyama curve in water spray cooling:Its derivation from temperature-time histories and its dependence on the quantities that characterize drop impact[J].International Journal of Heat and Mass Transfer,2007,50(25/26):4948-4966.

[18] Some T,Kim J,Lehmann E,et al.Pressure based prediction of spray cooling heat transfer coefficients[C]//International Mechanical Engineering Congress and Exposition.2007:1131-1138.

[19] Shedd T A,Pautsch A G.Spray impingement cooling with singles and multiple-nozzle arrays part Ⅱ:Visualization and empirical models[J].International Journal of Heat and Mass Transfer,2005,48(15):3176-3184.

[20] 王宏,余勇胜,朱恂,等.氨饱和压力对喷雾相变冷却特性的影响[J].中国激光,2011,38:0702004.(Wang Hong,Yu Yongsheng,Zhu Xun,et al.Effects saturation pressure on spray cooling with ammonia.Chinese Journal of Lasers,2011,38:0702004)

徐洪波, 钱春潮, 邵双全, 田长青, 司春强. R600a喷雾冷却系统换热过程[J]. 强激光与粒子束, 2015, 27(7): 071001. Xu Hongbo, Qian Chunchao, Shao Shuangquan, Tian Changqing, Si Chunqiang. Heat transfer process of R600a spray cooling system[J]. High Power Laser and Particle Beams, 2015, 27(7): 071001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!