发光学报, 2019, 40 (10): 1303, 网络出版: 2019-10-23  

以PV值为优化目标的光学系统支撑结构

Topology-optimization of Lens Contact Support Structures: PV Value as An Optimization Objective
作者单位
1 常州大学 机械工程学院, 江苏 常州 213164
2 安徽工程大学 机械与汽车工程学院, 安徽 芜湖 241000
摘要
光机系统中支撑结构与光学元件的接触位置、接触面积、接触应力及支撑结构的柔度是光学系统成像质量的重要影响因素,为了降低因垂直方向支撑引起的几何像差,以像差指数PV值为优化目标,对单个透镜接触支撑结构进行了拓扑优化设计。首先建立接触拓扑优化模型,以采用Signorini接触条件建立的刚性支撑单向接触中的线弹性结构为例,验证了接触拓扑优化模型的正确性。用透镜变形函数来描述透镜的像差指数PV值,将其作为拓扑模型的优化目标。采用SIMP方法描述拓扑优化设计变量,采用扩展后的拉格朗日算子求解接触条件。采用MMA优化算法求解拓扑优化模型的最优解。通过拓扑优化设计变量的最优解,定义了满足几何畸变要求的支撑结构的最优拓扑结构。结果表明,该方法可使透镜PV值降低14%,面形RMS值降低13.8%。同时搭建实验平台,对透镜PV值和RMS值进行测试,得到的最佳接触支撑结构的支持试验结果表明,平面反射镜表面PV值分别降低了60.4%和42.9%,面形RMS值分别降低了74.3%和38.9%,优化后的接触支撑结构有效地提高了高精度单透镜支架的精度,具有很大的实际应用潜力。
Abstract
The contact position, contact area, contact stress and flexibility of single lens support structure in an optical system are important influencing factors of the system′s imaging quality. Topology optimization of the single-lens contact support structure is carried out using the aberration index PV value as the optimization objective to reduce geometric aberration aberration in the single mirror caused by gravitational force. We first establish the contact topology optimization model, then use a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini′s contact conditions as an example to verify the model. The aberration index PV value of the lens is described as a function of lens deformation; thus, the value serves as a functional objective of the topology optimization model. We use the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. The optimal solution of the topology optimization model can be solved via MMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements is defined by the optimal solution of the design variables. We found that the PV value of the lens can be reduced by 14% and the lens surface RMS value by 13.8% after applying the proposed method. We also tested the lens PV value and RMS value on an experimental platform supported by the optimal contact support structure. The surface of the plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values by 74.3% and 38.9%. To this effect, the optimal contact support structure effectively improves the precision of the single lens support and demonstrates significant potential for practical application.
参考文献

[1] CHENG K T,OLHOFF N. An investigation concerning optimal design of solid elastic plates [J]. Int. J. Solids Struct., 1981,17(3):305-323.

[2] BENDSE M P,KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Comput. Methods Appl. Mech. Eng., 1988,71(2):197-224.

[3] DAZ A R,BENDSE M P. Shape optimization of structures for multiple loading conditions using a homogenization method [J]. Struct. Optim., 1992,4(1):17-22.

[4] SIGMUND O. Design of Material Structures Using Topology Optimization [D]. Denmark:Technical University of Denmark, 1994.

[5] BENDSE M P,SIGMUND O. Material interpolation schemes in topology optimization [J]. Arch. Appl. Mech., 1999,69(9-10):635-654.

[6] STOLPE M,SVANBERGK. An alternative interpolation scheme for minimum compliance topology optimization [J]. Struct. Multidis. Optim., 2001,22(2):116-124.

[7] RIETZ A. Sufficiency of a finite exponent in SIMP (Power law) method [J]. Struct. Multidis. Optim., 2001,21(2):159-163.

[8] HU R,LIU S T,LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope [J]. Appl. Opt., 2017,56(15):4551-4560.

[9] XIE Y M,STEVENG P. A simple evolutionary procedure for structural optimization [J]. Comput. Struct., 1993,49(5):885-896.

[10] QUERIN O M,STEVEN G P,XIE Y M. Evolutionary structural optimisation using an additive algorithm [J]. Finite Elements Anal. Des., 2000,34(3-4):291-308.

[11] QUERIN O M,YOUNG V,STEVEN G P,et al.. Computational efficiency and validation of bi-directional evolutionary structural optimisation [J]. Comput. Methods Appl. Mech. Eng., 2000,189(2):559-573.

[12] LIU X,YI W J,LI Q S,et al.. Genetic evolutionary structural optimization [J]. J. Construct. Steel Res., 2008,64(3):305-311.

[13] OSHER S,SETHIANJ A. Fronts propagating with curvature- dependent speed:algorithms based on Hamilton-Jacobi formulations [J]. J. Comput. Phys., 1988,79(1):12-49.

[14] SETHIAN J A,WIEGMANNA. Structural boundary design via level set and immersed interface methods [J]. J. Comput. Phys., 2000,163(2):489-528.

[15] BELYTSCHKO T,XIAO S P,PARIMIC. Topology optimization with implicit functions and regularization [J]. Int. J. Numer. Methods Eng., 2003,57(8):1177-1196.

[16] WANG M Y,WANG X M,GUO D M. A level set method for structural topology optimization [J]. Comput. Methods Appl. Mech. Eng., 2003,192(1-2):227-246.

[17] LUO J Z,LUO Z,CHEN L P,et al.. A semi-implicit level set method for structural shape and topology optimization [J]. J. Comput. Phys., 2008,227(11):5561-5581.

[18] STRMBERG N,KLARBRING A. Topology optimization of structures in unilateral contact [J]. Struct. Multidis. Optim., 2010,41(1):57-64.

[19] NI J C,WANG C W,ZHANG C C,et al.. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material [J]. Light:Sci. Appl., 2017,6:e17011-1-17.

[20] LIEBETRAUT P,PETSCH S,LIEBESKIND J,et al.. Elastomeric lenses with tunable astigmatism [J]. Light:Sci. Appl., 2013,2:e98-1-6.

[21] WU D,XU J,NIU L G,et al.. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting [J]. Light:Sci. Appl., 2015,4(1):e228-1-8.

[22] LIU S T,HU R,LI Q H,et al.. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope [J]. Appl. Opt., 2014,53(35):8318-8325.

[23] ANDREASSEN E,CLAUSEN A,SCHEVENELS M,et al.. Efficient topology optimization in MATLAB using 88 lines of code [J]. Struct. Multidis. Optim., 2011,43(1):1-16.

[24] SVANBERG K. The method of moving asymptotes—a new method for structural optimization [J]. Int. J. Numer. Methods Eng., 1987,24(2):359-373.

[25] 刘丹,陈启超,黄晟,等. 光刻制程参数对光刻胶DICD和锥角的影响 [J]. 液晶与显示, 2019,34(2):146-154.

    LIU D,CHEN Q C,HUANG S,et al.. Influence of lithography process parameter on DICD and taper of photoresist [J]. Chin. J. Liq. Cryst. Disp., 2019,34(2):146-154. (in Chinese)

[26] 吕志军,张锋,刘文渠,等. 光刻法图案化石墨烯研究 [J]. 液晶与显示, 2019,34(1):33-38.

    LYU Z J,ZHANG F,LIU W Q,et al.. Patterning graphene by photolithography [J]. Chin. J. Liq. Cryst. Disp., 2019,34(1):33-38. (in Chinese)

[27] 张玉虎,李亚文,刘小波,等. 光刻胶段差对光刻图形的影响与改善 [J]. 液晶与显示, 2018,33(8):653-660.

    ZHANG Y H,LI Y W,LIU X B,et al.. Effect of segment difference of photoresist on lithography pattern and improvement[J]. Chin. J. Liq. Cryst. Disp., 2018,33(8):653-660. (in Chinese)

李一芒, 周子云, 刘永明. 以PV值为优化目标的光学系统支撑结构[J]. 发光学报, 2019, 40(10): 1303. LI Yi-mang, ZHOU Zi-yun, LIU Yong-ming. Topology-optimization of Lens Contact Support Structures: PV Value as An Optimization Objective[J]. Chinese Journal of Luminescence, 2019, 40(10): 1303.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!