激光与光电子学进展, 2020, 57 (14): 140001, 网络出版: 2020-07-23   

纳米计算机断层扫描成像技术进展综述 下载: 2670次封面文章

Review on Development of Nano-Computed Tomography Imaging Technology
作者单位
1 天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
2 天津大学南昌微技术研究院, 天津 300072
引用该论文

吕寒玉, 邹晶, 赵金涛, 胡晓东. 纳米计算机断层扫描成像技术进展综述[J]. 激光与光电子学进展, 2020, 57(14): 140001.

Hanyu Lü, Jing Zou, Jintao Zhao, Xiaodong Hu. Review on Development of Nano-Computed Tomography Imaging Technology[J]. Laser & Optoelectronics Progress, 2020, 57(14): 140001.

参考文献

[1] 颜功兴, 刘占芳, 冯晓伟. 基于CT扫描和激光烧结技术的上颌骨及牙列三维仿真与修复[J]. 中国激光, 2009, 36(10): 2538-2542.

    Yan G X, Liu Z F, Feng X W. Three dimensional simulation and repair of skull maxilla and dentition based on CT scanning and laser sintering technologies[J]. Chinese Journal of Lasers, 2009, 36(10): 2538-2542.

[2] 张朝霞, 陈晓冬, 单建丰, 等. 基于多层螺旋CT血管分析的感兴趣冠脉段最佳造影角度计算[J]. 中国激光, 2011, 38(11): 1104003.

    Zhang X X, Chen X D, Shan J F, et al. Calculation of optimal angiographic angle for segment of interest based on multislice computed tomography vessel analysis[J]. Chinese Journal of Lasers, 2011, 38(11): 1104003.

[3] 苗光, 李朝锋. 二维和三维卷积神经网络相结合的CT图像肺结节检测方法[J]. 激光与光电子学进展, 2018, 55(5): 051006.

    Miao G, Li C F. Detection of pulmonary nodules CT images combined with two-dimensional and three-dimensional convolution neural networks[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051006.

[4] Hounsfield G N. Computerized transverse axial scanning (tomography): Part 1. Description of system[J]. The British Journal of Radiology, 1973, 46(552): 1016-1022.

[5] Taguchi K, Aradate H. Algorithm for image reconstruction in multi-slice helical CT[J]. Medical Physics, 1998, 25(4): 550-561.

[6] Kalender W A. Thin-section three-dimensional spiral CT: is isotropic imaging possible?[J]. Radiology, 1995, 197(3): 578-580.

[7] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619.

[8] Martin T, Koch A. Recent developments in X-ray imaging with micrometer spatial resolution[J]. Journal of Synchrotron Radiation, 2006, 13(2): 180-194.

[9] Brownlow L, Mayo S, Miller P, et al. Towards 50-nanometre resolution with an SEM-hosted X-ray microscope[J]. Microscopy and Analysis, 2006, 20(2): 13-15.

[10] Bilderback D H, Thiel D J, Pahl R, et al. X-ray applications with glass-capillary optics[J]. Journal of Synchrotron Radiation, 1994, 1(1): 37-42.

[11] Snigirev A, Kohn V, Snigireva I, et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature, 1996, 384(6604): 49-51.

[12] Bilderback D, Hoffman S, Thiel D. Nanometer spatial resolution achieved in hard X-ray imaging and Laue diffraction experiments[J]. Science, 1994, 263(5144): 201-203.

[13] Kamijo N, Tamura S, Suzuki Y, et al. Fabrication and testing of hard X-ray sputtered-sliced zone plate[J]. Review of Scientific Instruments, 1995, 66(2): 2132-2134.

[14] 张朝宗, 郭志平, 张朋. 工业CT技术和原理[M]. 北京: 科学出版社, 2009.

    Zhang CZ, Guo ZP, ZhangP. Technology and principles of industrial CT[M]. Beijing: China Science Publishing & Media, Ltd., 2009.

[15] Kosior E, Bohic S, Suhonen H, et al. Absolute zinc quantification at the sub-cellular level by combined use of hard X-ray fluorescence and phase contrast imaging techniques[J]. Journal of Physics: Conference Series, 2013, 463: 012021.

[16] Lim J, Kim H, Park S Y. Hard X-ray nanotomography beamline 7C XNI at PLS-II[J]. Journal of Synchrotron Radiation, 2014, 21(4): 827-831.

[17] Takeuchi A, Suzuki Y, Uesugi K. Development of scanning-imaging X-ray microscope for quantitative three-dimensional phase contrast microimaging[J]. Journal of Physics: Conference Series, 2013, 463: 012034.

[18] Takeuchi A, Uesugi K, Suzuki Y. Zernike phase-contrast X-ray microscope with pseudo-Kohler illumination generated by sectored (polygon) condenser plate[J]. Journal of Physics: Conference Series, 2009, 186: 012020.

[19] Vogt U, Reinspach J, Uhlén F, et al. Diffractive optics for laboratory sources to free electron lasers[J]. Journal of Physics: Conference Series, 2013, 463: 012001.

[20] Watanabe N, Hashizume J, Goto M, et al. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter[J]. Journal of Physics: Conference Series, 2013, 463: 012011.

[21] Wong J. D'Sa D, Foley M, et al. NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles[J]. Pharmaceutical Research, 2014, 31(11): 3085-3094.

[22] 杨云昊. 硬X射线显微和纳米CT技术在细胞成像中的应用[D]. 合肥: 中国科学技术大学, 2010.

    Yang YH. Study on the applications of hard X-ray microscopy and nano-CT in cellular imaging[D]. Hefei: University of Science and Technology of China, 2010.

[23] Stock S R, Bleuet P, Laloum D, et al. SEM-based system for 100nm X-ray tomography for the analysis of porous silicon[J]. Proceedings of SPIE, 2014, 9212: 92120Z.

[24] Mohacsi I, Vartiainen I, Rösner B, et al. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range[J]. Scientific Reports, 2017, 7: 43624.

[25] Krüger S P, Neubauer H, Bartels M, et al. Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties[J]. Journal of Synchrotron Radiation, 2012, 19(2): 227-236.

[26] 陶芬, 王玉丹, 任玉琦, 等. X射线纳米成像单毛细管椭球镜的设计与检测[J]. 光学学报, 2017, 37(10): 1034002.

    Tao F, Wang Y D, Ren Y Q, et al. Design and detection of ellipsoidal mono-capillary for X-ray nano-imaging[J]. Acta Optica Sinica, 2017, 37(10): 1034002.

[27] Uesugi K, Hoshino M, Yagi N. Comparison of lens- and fiber-coupled CCD detectors for X-ray computed tomography[J]. Journal of Synchrotron Radiation, 2011, 18(2): 217-223.

[28] Chkhalo N I, Pestov A E, Salashchenko N N, et al. Sub-micrometer resolution proximity X-ray microscope with digital image registration[J]. Review of Scientific Instruments, 2015, 86(6): 063701.

[29] Stampanoni M, Wyss P, Abela R, et al. X-ray tomographic microscopy at the Swiss Light Source[J]. Proceedings of SPIE, 2002, 4503: 42-53.

[30] Koch A, Raven C, Spanne P, et al. X-ray imaging with submicrometer resolution employing transparent luminescent screens[J]. Journal of the Optical Society of America A, 1998, 15(7): 1940-1951.

[31] Engblom C, Langlois F, et al. Interferometric characterization of rotation stages for X-ray nanotomography[J]. Review of Scientific Instruments, 2017, 88(5): 053703.

[32] Nicola M, Hrouzek M, Renier M, et al. Towards a 10 nm run-out rotation axis [EB/OL]. [ 2019- 12- 31]. http://medsi2006spring8orjp/proc/43pdf, 2006.

[33] Kim J, Lauer K, Yan H, et al. Compact prototype apparatus for reducing the circle of confusion down to 40 nm for X-ray nanotomography[J]. Review of Scientific Instruments, 2013, 84(3): 035006.

[34] Xu W H, Lauer K, Chu Y, et al. A high-precision instrument for mapping of rotational errors in rotary stages[J]. Journal of Synchrotron Radiation, 2014, 21(6): 1367-1369.

[35] Zhao J T, Hu X D, Zou J, et al. Method for correction of rotation errors in Micro-CT System[J]. Nuclear Instruments and Methods in Physics Research Section A, 2016, 816: 149-159.

[36] Fu J, Li C, Liu Z Z. Analysis and calibration of stage axial vibration for synchrotron radiation nanoscale computed tomography[J]. Analytical and Bioanalytical Chemistry, 2015, 407(25): 7647-7655.

[37] Fu J, Li C, Liu Z Z. Analysis and correction of dynamic geometric misalignment for nano-scale computed tomography at BSRF[J]. PLoS One, 2015, 10(10): e0141682.

[38] Attwood D. Nanotomography comes of age[J]. Nature, 2006, 442(7103): 642-643.

[39] Chao W L, Harteneck B D, Liddle J A, et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 2005, 435(7046): 1210-1213.

[40] Li KN, Wojcik MJ, DivanR, et al., Nanotechnology and Microelectronics:Materials, Processing, Measurement, Phenomena, 2017, 35(6): 06G901.

[41] MoldovanN, DivanR, Zeng HJ, et al., Surfaces, Films, 2018, 36(1): 01A124.

[42] Takeuchi A, Uesugi K, Suzuki Y. Improvement of quantitative performance of imaging X-ray microscope by reduction of edge-enhancement effect[J]. Journal of Physics: Conference Series, 2017, 849: 012055.

[43] ParfeniukasK. High-aspect ratio nanofabrication for hard X-ray zone plates[D]. Stockholm: KTH Royal Institute of Technology, 2018.

[44] Takeuchi A, Uesugi K, Suzuki Y, et al. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics[J]. Journal of Synchrotron Radiation, 2017, 24(3): 586-594.

[45] Chen T Y, Chen Y T, Wang C L, et al. Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm[J]. Optics Express, 2011, 19(21): 19919-19924.

[46] Markus O, Matthias B, Döring F, et al. Two-dimensional sub-5-nm hard X-ray focusing with MZP[J]. Proceedings of SPIE, 2013, 8848: 884802.

[47] Osterhoff M, Eberl C, Döring F, et al. Towards multi-order hard X-ray imaging with multilayer zone plates[J]. Journal of Applied Crystallography, 2015, 48(1): 116-124.

[48] Liu C A, Conley R. MacRander A T, et al. Depth-graded multilayers for application in transmission geometry as linear zone plates[J]. Journal of Applied Physics, 2005, 98(11): 113519.

[49] Kang H C, Maser J, Stephenson G B, et al. Nanometer linear focusing of hard X rays by a multilayer Laue lens[J]. Physical Review Letters, 2006, 96(12): 127401.

[50] KoyamaT, TsujiT, TakanoH, et al. Development of multilayer laue lenses; (2) circular type[C]. AIP Conference Proceedings, 2011, 1365( 1): 100- 103.

[51] MimuraH, KimuraT, YokoyamaH, et al. Development of an adaptive optical system for sub-10-nm focusing of synchrotron radiation hard X-rays[C]. AIP Conference Proceedings, 2011, 1365( 1): 13- 20.

[52] Huang X J, Yan H F, Nazaretski E, et al. 11 nm hard X-ray focus from a large-aperture multilayer Laue lens[J]. Scientific Reports, 2013, 3: 3562.

[53] Huang X J, Conley R, Bouet N, et al. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens[J]. Optics Express, 2015, 23(10): 12496-12507.

[54] Nazaretski E, Xu W, Bouet N, et al. Development and characterization of monolithic multilayer Laue lens nanofocusing optics[J]. Applied Physics Letters, 2016, 108(26): 261102.

[55] Li Y L, Beck R, Huang T, et al. Scatterless hybrid metal-single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction[J]. Journal of Applied Crystallography, 2008, 41(6): 1134-1139.

[56] Cai Z H, Rodrigues W, Ilinski P, et al. Synchrotron X-ray microdiffraction diagnostics of multilayer optoelectronic devices[J]. Applied Physics Letters, 1999, 75(1): 100-102.

[57] Chon K S, Juhng S K, Yoon K H. Design study of hard X-ray tomography system to obtain a spatial resolution of 100 nm[J]. Current Applied Physics, 2012, 12(1): 134-140.

[58] Zeng X H, Duewer F, Feser M, et al. Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes[J]. Applied Optics, 2008, 47(13): 2376-2381.

[59] Wang Y D, Ren Y Q, Zhou G Z, et al. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 896: 108-112.

[60] Jarre A, Fuhse C, Ollinger C, et al. Two-dimensional hard X-ray beam compression by combined focusing and waveguide optics[J]. Physical Review Letters, 2005, 94(7): 074801.

[61] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766.

[62] Mimura H, Handa S, Kimura T, et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 2010, 6(2): 122-125.

[63] Snigirev A, Kohn V, Snigireva I, et al. Focusing high-energy X-rays by compound refractive lenses[J]. Applied Optics, 1998, 37(4): 653-662.

[64] Ladislav P N, Yury D, Vaclav J, et al. X-ray imaging with compound refractive lens and microfocus X-ray tube[J]. Proceedings of SPIE, 2008, 7077: 70770H.

[65] Schroer C G, Kurapova O, Patommel J, et al. Hard X-ray nanoprobe based on refractive X-ray lenses[J]. Applied Physics Letters, 2005, 87(12): 124103.

[66] Brancewicz M, Itou M, Sakurai Y, et al. High transmission Ni compound refractive lens for high energy X-rays[J]. Review of Scientific Instruments, 2016, 87(8): 085106.

[67] Lengeler B, Tümmler J, Snigirev A, et al. Transmission and gain of singly and doubly focusing refractive X-ray lenses[J]. Journal of Applied Physics, 1998, 84(11): 5855-5861.

[68] Piestrup M A, Cremer J T, Beguiristain H R, et al. Two-dimensional X-ray focusing from compound lenses made of plastic[J]. Review of Scientific Instruments, 2000, 71(12): 4375.

[69] Aristov V, Grigoriev M, Kuznetsov S, et al. X-ray refractive planar lens with minimized absorption[J]. Applied Physics Letters, 2000, 77(24): 4058-4060.

[70] LengelerB, Schroer CG, BennerB, et al. and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment, 2001, 467/468: 944- 950.

[71] Aaron S, Kenneth E, Ashley T. Kinoform lenses: toward nanometer resolution[J]. Proceedings of SPIE, 2005, 6002: 600210.

[72] Karvinen P, Grolimund D, Willimann M, et al. Kinoform diffractive lenses for efficient nano-focusing of hard X-rays[J]. Optics Express, 2014, 22(14): 16676-16685.

[73] Chen Y T, Lo T N, Chu Y S, et al. Full-field hard X-ray microscopy below 30 nm: a challenging nanofabrication achievement[J]. Nanotechnology, 2008, 19(39): 395302.

[74] Mohacsi I, Vartiainen I, Guizar-Sicairos M, et al. High resolution double-sided diffractive optics for hard X-ray microscopy[J]. Optics Express, 2015, 23(2): 776-786.

[75] Takemoto K, Usui K, Ohigashi T, et al. Improvement of cryogenic 3-dimensional observation system of soft X-ray microscope at the SR center of Ritsumeikan University[J]. Journal of Physics: Conference Series, 2013, 463: 012009.

[76] WeitkampT. High-resolution X-ray imaging and tomography at the ESRF beamline ID 22[C]. AIP Conference Proceedings, 2000, 507( 1): 424- 429.

[77] Chu Y S. Yi J M, de Carlo F, et al. Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution[J]. Applied Physics Letters, 2008, 92(10): 103119.

[78] Takeuchi A, Uesugi K, Takano H, et al. Submicrometer-resolution three-dimensional imaging with hard X-ray imaging microtomography[J]. Review of Scientific Instruments, 2002, 73(12): 4246-4249.

[79] Yoshio S, Takeuchi A, Terada Y, et al. Development of large-field high-resolution hard X-ray imaging microscopy and microtomography with Fresnel zone plate objective[J]. Proceedings of SPIE, 2013, 8851: 885109.

[80] Pogany A. A small step to higher resolution[J]. Nature Physics, 2006, 2(10): 657-658.

[81] Ice G E, Budai J D. Pang J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 2011, 334(6060): 1234-1239.

[82] Kohmura Y, Awaji M, Suzuki Y, et al. X-ray focusing test and X-ray imaging test by a microcapillary X-ray lens at an undulator beamline[J]. Review of Scientific Instruments, 1999, 70(11): 4161-4167.

[83] Schroer C G, Kuhlmann M, Hunger U T, et al. Nanofocusing parabolic refractive X-ray lenses[J]. Applied Physics Letters, 2003, 82(9): 1485-1487.

[84] SnigirevaI, Vaughan G B M, Snigirev A, et al. High-energy nanoscale-resolution X-ray microscopy based on refractive optics on a long beamline[C]. AIP Conference Proceedings, 2011, 1365( 1): 188- 191.

[85] Lengeler B, Schroer C G, Richwin M, et al. A microscope for hard X-rays based on parabolic compound refractive lenses[J]. Applied Physics Letters, 1999, 74(26): 3924-3926.

[86] Liao K L, Hong Y L, Sheng W F. Optimized short kinoform lenses for hard X-ray nano-focusing[J]. Optics Communications, 2015, 339: 53-60.

[87] 钟长游. 高能X射线复合折射透镜设计和应用[D]. 北京: 中国科学院大学, 2018.

    Zhong CY. Design and application of high energy X-ray compound refractive lens[D]. Beijing: University of Chinese Academy of Sciences, 2018.

[88] Seiboth F, Wittwer F, Scholz M, et al. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses[J]. Journal of Synchrotron Radiation, 2018, 25(1): 108-115.

[89] Kohn V G. Effective aperture of X-ray compound refractive lenses[J]. Journal of Synchrotron Radiation, 2017, 24(3): 609-614.

[90] Gasilov S, dos Santos Rolo T, Mittone A, et al. Generalized pupil function of a compound X-ray refractive lens[J]. Optics Express, 2017, 25(21): 25090-25097.

[91] Huang CC, Mu BZ, Wang ZS, et al. Imaging properties of a spherical compound refractive X-ray lens[C]. Proceedings of SPIE, 2009, 7360: 736006.

[92] Korytár D, Cecilia A, et al. High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector[J]. Journal of Synchrotron Radiation, 2013, 20(1): 153-159.

[93] Hirano K, Yamashita Y, Takahashi Y, et al. Development of variable-magnification X-ray Bragg optics[J]. Journal of Synchrotron Radiation, 2015, 22(4): 956-960.

[94] Švéda L, Cecilia A, et al. X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval[J]. Optics Express, 2014, 22(18): 21508-21520.

[95] Hrivňak S. Uli n J, Mike L, et al. Single-distance phase retrieval algorithm for Bragg Magnifier microscope[J]. Optics Express, 2016, 24(24): 27753-27762.

[96] Stampanoni M, Borchert G, Abela R, et al. Bragg magnifier: a detector for submicrometer X-ray computer tomography[J]. Journal of Applied Physics, 2002, 92(12): 7630-7635.

[97] Dabagov S B. Wave theory of X-ray scattering in capillary structures[J]. X-Ray Spectrometry, 2003, 32(3): 179-185.

[98] 丰丙刚. 毛细管聚焦特性及其X射线荧光与纳米全场成像应用研究[D]. 上海: 中国科学院研究生院( 上海应用物理研究所), 2017.

    Feng BG. The focusing characteristics of capillary and its applications on the fluorescence imaging and full-field X-ray nano-imaging[D]. Shanghai: Shanghai Institute of Applied Physics,Chinese Academy of Sciences, 2017.

[99] Emoto T, Sato Y, Konishi Y, et al. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(8): 1291-1294.

[100] Yang J, Li Y D, Wang X Y, et al. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2017, 401: 25-28.

[101] Mazuritskiy M I, Lerer A M. Spatial distribution of channeling long-wavelength X rays at the output of polycapillary structures[J]. JETP Letters, 2015, 102(7): 483-486.

[102] Yamanashi M, Kometani N, Tsuji K. Preliminary experiment of X-ray diffraction imaging[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2015, 355: 272-275.

[103] Mazuritskiy M I, Lerer A M, Makhno P V. Anomalous scattering, transport, and spatial distribution of X-ray fluorescence at the exit of polycapillary structures[J]. Journal of Experimental and Theoretical Physics, 2016, 123(6): 942-949.

[104] Chen J P, Wang J Y, Zou J, et al. Polycapillary coupled X-ray digital radiation imaging system: Feasibility analysis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 870: 19-24.

[105] Chen Y T, Chen T Y, Yi J, et al. Hard X-ray Zernike microscopy reaches 30 nm resolution[J]. Optics Letters, 2011, 36(7): 1269-1271.

[106] Holzner C, Feser M, Vogt S, et al. Zernike phase contrast in scanning microscopy with X-rays[J]. Nature Physics, 2010, 6(11): 883-887.

[107] Bai B, Zhu R K, Wu S T, et al. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 354-358.

[108] Bailey J J. Heenan T M M, Finegan D P, et al. Laser-preparation of geometrically optimised samples for X-ray nano-CT[J]. Journal of Microscopy, 2017, 267(3): 384-396.

[109] Do M, Isaacson S A. McDermott G, et al. Imaging and characterizing cells using tomography[J]. Archives of Biochemistry and Biophysics, 2015, 581: 111-121.

[110] Fischer P. X-ray imaging of magnetic structures[J]. IEEE Transactions on Magnetics, 2015, 51(2): 1-31.

[111] Gureyev T E. Nesterets Y I, de Hoog F, et al. Duality between noise and spatial resolution in linear systems[J]. Optics Express, 2014, 22(8): 9087-9094.

[112] Hasegawa T, Hanada T, Yorozu A, et al. Microfocus X-ray imaging of the internal geometry of brachytherapy seeds[J]. Applied Radiation and Isotopes, 2014, 86: 13-20.

[113] Huang X Z, Li N, Wang D J, et al. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 112: 43-49.

[114] Kim C, Zuo Z L, Finger H, et al. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)[J]. Journal of Nanoparticle Research, 2015, 17(3): 126.

[115] Lim C, Yan B, Yin L L, et al. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT[J]. Electrochimica Acta, 2012, 75: 279-287.

[116] Litster S, Epting W K, Wargo E A, et al. Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging[J]. Fuel Cells, 2013, 13: 935-945.

[117] Vogt S, Schneider G, Steuernagel A, et al. X-ray microscopic studies of the drosophila dosage compensation complex[J]. Journal of Structural Biology, 2000, 132(2): 123-132.

[118] Momose A, Kawamoto S, Koyama I, et al. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42(7B): L866-L868.

[119] Hauke C, Anton G, Hellbach K, et al. Enhanced reconstruction algorithm for moiré artifact suppression in Talbot-Lau X-ray imaging[J]. Physics in Medicine & Biology, 2018, 63(13): 135018.

[120] 王雅丽, 史祎诗, 李拓, 等. 可见光域叠层成像中照明光束的关键参量研究[J]. 物理学报, 2013, 62(6): 201-210.

    Wang Y L, Wang Y L, Li T, et al. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band?[J]. Acta Physica Sinica, 2013, 62(6): 201-210.

[121] Giewekemeyer K, Thibault P, Kalbfleisch S, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 529-534.

[122] Holler M, Diaz A, Guizar-Sicairos M, et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 2015, 4: 3857.

[123] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010, 467(7314): 436-439.

[124] Kruth J P, Bartscher M, Carmignato S, et al. Computed tomography for dimensional metrology[J]. CIRP Annals, 2011, 60(2): 821-842.

[125] LazaroD, LegoupilS, BlokkeelG, et al. Metrology of steel micro-nozzles using X-ray microtomography[C]//Proceedings of the DIR 2007 - International Symposium on Digital industrial Radiology and Computed Tomography, 2007: 25- 27.

[126] Villarraga-Gómez H, Herazo E L, et al. X-ray computed tomography: from medical imaging to dimensional metrology[J]. Precision Engineering, 2019, 60: 544-569.

[127] Schmitt R, Niggemann C. Uncertainty in measurement for X-ray-computed tomography using calibrated work pieces[J]. Measurement Science and Technology, 2010, 21(5): 054008.

[128] Villarraga-Gómez H, Lee C, Smith S T. Dimensional metrology with X-ray CT: a comparison with CMM measurements on internal features and compliant structures[J]. Precision Engineering, 2018, 51: 291-307.

[129] 唐天旭, 段晓礁, 周志政, 等. 基于散射校正板的锥束微纳CT系统的散射校正[J]. 光学学报, 2019, 39(8): 0834001.

    Tang T X, Duan X J, Zhou Z Z, et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 2019, 39(8): 0834001.

[130] Dudak J, Karch J, Holcova K, et al. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix[J]. Journal of Instrumentation, 2017, 12(12): C12024.

[131] 李文杰. 纳米CT三维图像处理分析方法及其应用的研究[D]. 合肥: 中国科学技术大学, 2011: 20- 28.

    Li WJ. Study on the application of 3D image processing and analysis for nano-CT[D]. Hefei: University of Science and Technology of China, 2011: 20- 28.

[132] 朱佩平, 何其利, 廖可梁, 等. 具有三种定量成像机制的纳米CT三维成像方法: CN201711292776. 5[P].2017-12-08.

    Zhu PP, He QL, Liao KL, et al. 2017-12-08.

吕寒玉, 邹晶, 赵金涛, 胡晓东. 纳米计算机断层扫描成像技术进展综述[J]. 激光与光电子学进展, 2020, 57(14): 140001. Hanyu Lü, Jing Zou, Jintao Zhao, Xiaodong Hu. Review on Development of Nano-Computed Tomography Imaging Technology[J]. Laser & Optoelectronics Progress, 2020, 57(14): 140001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!