激光与光电子学进展, 2014, 51 (11): 110008, 网络出版: 2014-11-07  

克尔微腔光频梳理论分析模型及多波长光源应用探讨 下载: 1121次

Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources
作者单位
中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100083
摘要
基于高品质因子微谐振腔的参量四波混频实现光学频率梳是一种新的频率梳实现方法,拓展了传统固体及非线性光纤飞秒激光器等光频梳的应用范围,在精密频率标定、天文光谱校准、任意波形产生、光学存储和孤子传输、片上通信用光源等方面具有较高的优势。本文简要总结、评述了几种主要的光频梳动力学分析模型及数值方法,以及这些不同方法的内在联系。基于描述光频梳动态行为的非线性Lugiato-Lefever 方程分析了可能存在的动力学过程,并据此对不同特点光频梳进行了分类。通过设计反馈结构理论上研究了正常色散微腔和反常色散微腔的光梳特点,探讨了作为片上光互连用多波长光源应满足的条件及可能的实现途径。
Abstract
A new optical frequency comb generation method has emerged using parameter four wave mixing in high quality factor Kerr micro-resonators. Due to the unique characteristics, it has broadened the application fields of the traditional solid state or nonlinear fiber femto-second laser based optical frequency combs, such as precise frequency calibration, precision spectroscopy, astronomy, waveform generation, optical storage and soliton transmission, telecommunication source and so on. In this paper, some principal theoretical modeling methods for Kerr micro-resonators based optical frequency combs are summarized and their inherent relationship is reviewed, then based on the nonlinear Lugiato-Lefever equation (LLE), a new stability analysis method is given to determine the modulation instability areas in both normal and anomalous dispersion resonators and hereby the different combs are classified. Finally the possibility of Kerr resonator with controllable feedback as an integrated multi-wavelength source is discussed and several different probably achieving methods and conditions are demonstrated.
参考文献

[1] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity [J]. Phys Rev Lett, 2004, 93(8): 083904.

[2] Del'Haye P, Schliesser A, Arcizet O, et al.. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217.

[3] 吴学健, 李岩, 尉昊赟, 等. 飞秒光学频率梳在精密测量中的应用[J]. 激光与光电子学进展, 2012, 49(3): 030001.

    Wu Xuejian, Li Yan, Wei Haoyun, et al.. Femtosecond optical frequency combs for precision measurement applications [J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

[4] 邹长玲, 董春华, 崔金明, 等. 回音壁模式光学微腔:基础与应用[J]. 中国科学:物理学力学天文学, 2012, 42(11): 1155-1175.

    Zou Changling, Dong Chunhua, Cui Jinming, et al.. Whispering gallery mode optical microresonators: fundamentals and applications [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(11): 1155-1175.

[5] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559.

[6] Del'Haye P, Arcizet O, Schliesser A, et al.. Full stabilization of a microresonator-based optical frequency comb [J]. Phys Rev Lett, 2008, 101(5): 053903.

[7] Foster M A, Levy J S, Kuzucu O, et al.. Silicon-based monolithic optical frequency comb source [J]. Opt Express, 2011, 19(15): 14233-14239.

[8] Del′Haye P, Papp S B, Diddams S A. Hybrid electro-optically modulated microcombs [J]. Phys Rev Lett, 2012, 109(26): 263901.

[9] Papp S B, Diddams S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb [J]. Phys Rev A, 2011, 84(5): 053833.

[10] Ferdous F, Miao H, Leaird D E, et al.. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J]. Nat Photon, 2011, 5: 770-776.

[11] Levy J S, Gondarenko A, Foster M A, et al.. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J]. Nat Photon, 2010, 4: 37-40.

[12] Levy J S, Saha K, Okawachi Y, et al.. High-performance silicon-nitride-based multiple-wavelength source [J]. IEEE Photon Technol Lett, 2012, 24(16): 1375-1377.

[13] Johnson A R, Okawachi Y, Lamont M R E, et al.. Microresonator-based comb generation without an external laser source [J]. Opt Express, 2014, 22(2): 1394-1401.

[14] Godey C, Balakireva I, Coillet A, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: Case of normal dispersion [J]. Phys Rev A, 2014, 89(6): 063814.

[15] Balakireva I, Coillet A, Godey C, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: Case of anomalous dispersion [J]. arXiv:1308.2542v1, 2013.

[16] Coillet A, Chembo Y K. Routes to spatiotemporal chaos in Kerr optical frequency combs [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1): 013113.

[17] Leo F, Coen S, Kockaert P, et al.. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer [J]. Nat Photon, 2010, 4: 471-476.

[18] Herr T, Brasch V, Jost J D, et al.. Temporal solitons in optical microresonators [J]. Nat Photon, 2014, 8: 145-152.

[19] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whisperinggallery-mode resonators [J]. Phys Rev A, 2010, 82(3): 033801.

[20] Chembo Y K, Strekalov D V, Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators [J]. Phys Rev Lett, 2010, 104(10): 103902.

[21] Coen S, Randle H G, Sylvestre T, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model [J]. Opt Lett, 2013, 38(1): 37-39.

[22] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whisperinggallery-mode resonators [J]. Phys Rev A, 2013, 87(5): 053852.

[23] Coillet A, Balakireva I, Henriet R, et al.. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators [J]. IEEE Photonics J, 2013, 5(4): 6100409.

[24] Agrawal G P. Nonlinear Fiber Optics [M]. 3rd ed. Burlington: Academic Press, 2001.

[25] 陈海寰, 陈子伦, 周旋风, 等. 双零色散波长光子晶体光纤中产生超连续谱的数值模拟[J]. 中国激光, 2012, 39(s2): s205002.

    Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al.. Numerical study of supercontinuum generation in photonic crystal fibers with two zero dispersion wavelengths [J]. Chinese J Lasers, 2012, 39(s2): s205002.

[26] 张灿, 朱洪亮, 梁松, 等. 单片集成10 信道多波长光源[J]. 中国激光, 2013, 40(12): 1202001.

    Zhang Can, Zhu Hongliang, Liang Song, et al.. Monolithically integrated 10-channel multi-wavelength light sources [J]. Chinese J Lasers, 2013, 40(12): 1202001.

[27] 马丽, 朱洪亮, 梁松, 等. DFB 激光器阵列与MMI 耦合器、SOA的单片集成[J]. 光电子·激光, 2013, 24(3): 424-428.

    Ma Li, Zhu Hongliang, Liang Song, et al.. DFB laser array monolithically integrated with MMI combiner and SOA [J]. J Optoelectronics·Laser, 2013, 24(3): 424-428.

[28] 缪雪峰, 王天枢, 周雪芳, 等. 一种可调谐的多波长布里渊掺铒光纤激光器[J]. 中国激光, 2012, 39(6): 0602010.

    Miao Xuefeng, Wang Tianshu, Zhou Xuefang, et al.. A tunable multiwavelength Brillouin-erbium fiber laser [J]. Chinese J Lasers, 2012, 39(6): 0602010.

[29] Jiang Yufeng, Zhao Xin, Wang Jian, et al.. Robust and controllable generation of frequency combs in microresonators with selected sideband feedback [C]. Proceedings of the Optical Fiber Communication Conference, 2014.

张利斌, 陈少武. 克尔微腔光频梳理论分析模型及多波长光源应用探讨[J]. 激光与光电子学进展, 2014, 51(11): 110008. Zhang Libin, Chen Shaowu. Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!