光学学报, 2014, 34 (12): 1222007, 网络出版: 2014-11-07  

时域有限差分法利用聚焦光脉冲模拟介质球微粒所受单频光阱力

Numerical Simulation of Optical Force on Dielectric Nanosphere by Focused Light Pulse with Finite-Difference Time-Domain Method
作者单位
大连理工大学物理与光电工程学院, 辽宁 大连 116024
摘要
用三维时域有限差分法对光镊装置中介质球微粒所受光阱力情况进行模拟。根据Richards-Wolf矢量场衍射积分公式对消球差会聚透镜像空间中电磁场分布的表示,在总场空间中实现了对聚焦光脉冲的模拟。聚焦光脉冲与介质球微粒的相互作用,通过离散傅里叶变换提取出单频成分,利用计算光阱力的麦克斯韦应力张量公式,计算单频激光对介质球的光阱力。聚焦光脉冲的引入可以使一次计算得到多个频率下的计算结果。对相同的聚焦装置下介质球受不同频率入射光的光阱力情况进行了计算。计算结果表明使用线偏振光作光源时,大数值孔径聚焦透镜和短入射波长有利于介质球的横向操纵;沿光轴方向对介质球进行纵向操纵,需要大数值孔径的物镜和与之相适应的入射波长。
Abstract
Numerical simulation of the optical force exerted on dielectric nanosphere in laser trapping device with three dimensional finite-difference time-domain (FDTD) method is proposed. The focused light pulse is implemented in FDTD total field zone according to Richards-Wolf vectorial diffraction theory. The monochromatic field is extracted from the interacted electromagnetic field between focused light pulse and dielectric nanosphere by discrete Fourier transform, and the results are substituted into Maxwell stress tensor to calculate the optical force. The method is accurated for both simulation of focused light pulse and calculation of optical force because it is based on strict theories. High efficiency can be achieved for using focused light pulse as incident source. The optical force exerted on dielectric nanosphere is calculated when the sphere center is moving in the focal plane and along the axis of the object lens. From the calculation results we can conclude that the high numerical aperture object lens and short wavelength benefit the transverse manipulation of dielectric nanosphere in the focal plane, and high numerical aperture object lens with appropriate wavelength can trap dielectric nanosphere along the axis of the lens.
参考文献

[1] A Ashkin. Acceleration and trapping of particles by radiation pressure [J]. Phys Rev Lett, 1970, 24(4): 156-159.

[2] A Ashkin, J M Dziedzic, J E Bjorkholm, et al.. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Opt Lett, 1986, 11(5): 288-290.

[3] 李银妹. 生命科学新技术光镊原理、技术和应用[M]. 合肥: 中国科学技术大学出版社, 1996. 40-49.

[4] J R Moffitt, Y R Chemla, S B Smith, et al.. Recent advances in optical tweezers [J]. Annual Review of Biochemistry, 2008, 77: 205-228.

[5] D G Grier. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.

[6] K C Neuman, S M Block. Optical trapping [J]. Review of Scientific Instruments, 2004, 75(9): 2787-2809.

[7] K Dholakia, P Reecea, M Gu. Optical micromanipulation [J]. Chemical Society Reviews, 2008, 37(1): 42-55.

[8] 李宝军, 辛洪宝, 张垚, 等. 光捕获和光操控研究进展[J]. 光学学报, 2011, 31(9): 0900126.

    Li Baojun, Xin Hongbao, Zhang Yao, et al.. Progress of optical trapping and manipulation [J]. Acta Optica Sinica, 2011, 31(9): 0900126.

[9] T Sugiura, T Okada, Y Inouye, et al.. Gold-bead scanning near-field optical microscope with laser-force position control [J]. Opt Lett, 1997, 22(22): 1663-1665.

[10] K Svoboda, S M Block. Optical trapping of metallic Rayleigh particles [J]. Opt Lett, 1994, 19(13): 930-932.

[11] S Kawata, Y Inouye, T Sugiura. Near-field scanning optical microscope with a laser trapped probe [J]. Japanese Journal of Applied Physics, 1994, 33(2): L1725-L1727.

[12] 张兵心, 陈淑芬, 付雷, 等. 基于表面等离子体激发的光学操控技术[J]. 中国激光, 2012, 39(6): 0610001.

    Zhang Bingxin, Chen Shufen, Fu Lei, et al.. Dynamic patterning of microparticles via surface plasmon excitation [J]. Chinese J Lasers, 2012, 39(6): 0610001.

[13] P Zemánek, A Joná , L rámek, et al.. Optical trapping of nanoparticles and microparticles by a Gaussian standing wave [J]. Opt Lett, 1999, 24(21): 1448-1450.

[14] 杨浩, 冯国英, 张大勇, 等. 聚焦光场俘获微球的FDTD分析[J]. 物理学报, 2008, 57(9): 5506-5512.

    Yang Hao, Feng Guoying, Zhang Dayong, et al.. Study on trapping force of focused optical field on the microsphere with the FDTD method [J]. Acta Physica Sinica, 2008, 57(9): 5506-5512.

[15] 巩蕾, 吴振森, 李正军, 等. 基片表面缺陷粒子在激光波束作用下的辐射力分析[J]. 中国激光, 2013, 40(2): 0203009.

    Gong Lei, Wu Zhensen, Li Zhengjun, et al.. Analysis of radiation forces exerted on defect particle on the wafer by a laser beam [J]. Chinese J Lasers, 2013, 40(2): 0203009.

[16] 伍小平, 胡耿军, 李静, 等. 时域有限差分法数值仿真单光镊中微球受到的光阱力[J]. 物理学报, 2011, 60(3): 030301.

    Wu Xiaoping, Hu Gengjun, Li Jing, et al.. FDTD numerical simulation of the trapping force of microsphere in single optical tweezers [J]. Acta Physica Sinica, 2011, 60(3): 030301.

[17] I R Capoglu, A Taflove, V Backman. Generation of an incident focused light pulse in FDTD [J]. Opt Express, 2008, 16(23): 19208-19220.

[18] W Sun, S Pan, Y Jiang. Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method [J]. Journal of Modern Optics, 2006, 53(18): 2691-2700.

[19] J Qin, X Wang, D Jia, et al.. FDTD approach to optical forces of tightly focused vector beams on metal particles [J]. Opt Express, 2009, 17(10): 8407-8416.

[20] Wolf E. Electromagnetic diffraction in optical systems. I. An integral representation of the image field [J]. Proceedings of the Royal Society A, 1959, 253(1274): 349-357.

[21] B Richards, E Wolf. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system [J]. Proceedings of the Royal Society A, 1959, 253(1274): 358-379.

[22] 阎杰, 鲁拥华, 王沛, 等. 径向偏振光聚焦光斑研究[J]. 光学学报, 2010, 30(12): 3597-3603.

    Yan Jie, Lu Yonghua, Wang Pei, et al.. Study of focal spot of radially polarized beam [J]. Acta Optica Sinica, 2010, 30(12): 3597-3603.

[23] G M Lerman, U Levy. Effect of radial polarization and apodization on spot size under tight focusing conditions [J]. Opt Express, 2008, 16(7): 4567-4581.

[24] J D Jackson. Classical Electrodynamics (3rd ed) [M]. Massachusetts: John Wiley & Sons, 1999. 258-262.

[25] M Dienerowitz, M Mazilu, K Dholakia. Optical manipulation of nanoparticles: a review [J]. SPIE, 2008, 2(1): 021875.

李宏, 李睿, 潘石, 张毅. 时域有限差分法利用聚焦光脉冲模拟介质球微粒所受单频光阱力[J]. 光学学报, 2014, 34(12): 1222007. Li Hong, Li Rui, Pan Shi, Zhang Yi. Numerical Simulation of Optical Force on Dielectric Nanosphere by Focused Light Pulse with Finite-Difference Time-Domain Method[J]. Acta Optica Sinica, 2014, 34(12): 1222007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!