人工晶体学报, 2020, 49 (4): 561, 网络出版: 2020-06-15   

室温核辐射探测器用碲锌镉晶体生长研究进展

Research Progress on CdZnTe Crystal Growth for Room Temperature Radiation Detection Applications
作者单位
1 西北工业大学,凝固技术国家重点实验室,西安 710072
2 陕西迪泰克新材料有限公司,西安 712000
摘要
碲锌镉(CdZnTe,CZT)晶体被认为是目前最有前途的室温半导体探测器材料之一,基于该晶体的探测器件具有能量分辨率高、体积小、便携等优点。而大面积CZT像素探测器的快速发展以及对高能、大剂量X射线探测的需求,对CZT材料的质量和尺寸提出了更高的要求。本文从CZT晶体的基本物性参数入手,探讨了大尺寸CZT晶体生长的影响因素,对两种主要的CZT生长方法——布里奇曼法和移动加热器法的研究进展进行了综述。
Abstract
CdZnTe (CZT) crystal has been considered as one of the most promising materials for room temperature semiconductor detector, with the advantages of high energy resolution, small volume and portability. With the rapid development of large-area CZT pixel detectors and the demand for high-energy and high-flux X-ray detection, higher requirements are put forward for the quality and size of CZT materials. In this paper, based from the basic physical properties of CZT crystal, the factors influencing the growth of large size CZT crystal were discussed. The research progress of two main CZT growth methods, Bridgman method and Travelling Heater method (THM) were summarized.
参考文献

[1] Knoll G F. Radiation Detection and Measurement[M]. Fourth Edition.Wiley,2010:864.

[2] 查钢强,王 涛,徐亚东,等.新型CZT半导体X射线和射线探测器研制与应用展望[J].物理,2013,42(12):862-869.

[3] Schlesinger T E, Toney J E, Yoon H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J].Materials Science and Engineering:R:Reports,2001,32(4):103-189.

[4] Rule T D. Experimental validation of (Cd, Zn)Te crystal growth model[D].Seattle:Washington State University,2002:48.

[5] Zhang N, Yeckel A, Burger A, et al. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride[J].Journal of Crystal Growth,2011,325(1):10-19.

[6] Wang T, Jie W Q, Xu Y D, et al. Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques[J].Transactions of Nonferrous Metals Society of China,2009,19:S622-S625.

[7] Haloui A, Feutelals Y, Legendre B. Experimental study of the ternary system Cd-Te-Zn[J].Journal of Alloys and Compounds,1997,260:179-192.

[8] Greenberg J H. P-T-X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd-Zn-Te system[J].Progress in Crystal Growth and Characterization of Materials,2003,47(2):196-238.

[9] Rudolph P. Fundamental studies on Bridgman growth of CdTe[J].Progress in Crystal Growth and Characterization of Materials,1994,29(1):275-381.

[10] Yu T C, Brebrick R F. The Hg-Cd-Zn-Te phase diagram[J].Journal of Phase Equilibria,1992,13(5):476-495.

[11] Triboulet R. Fundamentals of the CdTe and CdZnTe bulk growth[J].Physica Status Solidi(C),2005,2(5):1556-1565.

[12] Toney J E, Schlesinger T E, James R B. Optimal bandgap variants of Cd1-xZnxTe for high-resolution X-ray and gamma-ray spectroscopy[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1999,428(1):14-24.

[13] Szeles C, Driver M C. In Growth and properties of semi-insulating CdZnTe for radiation detector applications[J].Proceedings of SPIE,1998:2-9.

[14] Szeles C, Eissler E E. Current issues of high-pressure Bridgman growth of semi-insulating CdZnTe[J]. Materials Research Society: Symposia Proceedings,1998,484:309-318.

[15] Hilton N R. Material uniformity of cadmium zinc telluride in gamma-ray imaging detectors[D].Tucson:University of Arizona,2002.

[16] 介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(s1):24-35.

[17] Doty F P, Butler J F, Schetzina J F, et al. Properties of CdZnTe crystals grown by a high pressure Bridgman method[J].Journal of Vaccum Seience & Technology B, 1992,10(4):1418-1422.

[18] Szeles C, Cameron S E, Ndap J O, et al. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications[J].IEEE Transactions on Nuclear Science,2002,49(5):2535-2540.

[19] Szeles C, Cameron S E, Ndap J O, et al. Advances in the high-pressure crystal growth technology of semi-insulating CdZnTe for radiation detector application[J].Proceedings of SPIE,2004,5198:191-199.

[20] Szeles C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J].IEEE Transactions on Nuclear Science,2004,51(3):1242-1249.

[21] Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J].Physica Status Solidi (B),2004,241(3):783-790.

[22] Szeles C, Cameron S E, Soldner S A, et al. Development of the high-pressure electro-dynamic gradient crystal-growth technology for semi-insulating CdZnTe growth for radiation detector applications[J].J.Electron.Mater.,2004,33:742.

[23] Li L, Lu F, Lee C, et al. In new progress in large-size CZT (Zn=10%) single crystal growth using MVB technique for room temperature radiation detectors[J].IEEE Symposium Conference Record Nuclear Science,2004,4:2320-2323.

[24] Awadalla S A, Lynn K G, Wei S H, et al. Effect of Zn on the cation vacancy-isoelectronic oxygen pair in Cd1-xZnxTe crystals[J].Physical Review B,2004,70(24):245213.

[25] Gasperino D, Bliss M, Jones K, et al. On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace[J].Journal of Crystal Growth,2009,311(8):2327-2335.

[26] Datta A, Swain S, Cui Y, et al. Preliminary results on Bridgman grown CdZnTe detector crystals assisted by ampoule rotation[J].Hard X-Ray,Gamma-Ray,and Neutron Detector Physics XIV,2012,8507:850711.

[27] Lynn K. Overcoming mobility lifetime product limitations in vertical Bridgman production of cadmium zinc telluride detectors[J].Journal of Electronic Materials2019,48(7):07196.

[28] Zha M, Zappettini A, Bissoli F, et al. Boron oxide encapsulated Bridgman growth of high-purity high-resistivity cadmium telluride crystals[J].Journal of Crystal Growth,2004,260(3-4):291-297.

[29] Zha M, Zappettini A, Calestani D, et al. Full encapsulated CdZnTe crystals by the vertical Bridgman method[J].Journal of Crystal Growth,2008,310(7-9):2072-2075.

[30] Sordo S D, Abbene L, Caroli E, et al. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications[J].Sensors (Basel),2009,9(5):3491-526.

[31] Abbene L, Gerardi G, Turturici A A, et al. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects[J].Nucl Instrum Methods Phys Res Sect A,2016,835:1-12.

[32] Abbene L, Gerardi G, Raso G, et al. Development of new CdZnTe detectors for room-temperature high-flux radiation measurements[J].J. Synchrotron Radiat.,2017,24(2):429-438.

[33] Carcelen V, Hidalgo P, Rodriguez-Fernandez J, et al. Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses[J].Journal of Applied Physics,2010,107(9):4.

[34] Crocco J, Bensalah II, Zheng Q, et al. Influence of SiC pedestal in the growth of 50 mm CZT by Vertical gradient freeze method[J].Journal of Crystal Growth,2012,360:92-94.

[35] Shkir M, Ganesh V, AlFaify S, et al. Large size crystal growth, photoluminescence, crystal excellence, and hardness properties of In-doped cadmium zinc telluride[J].Crystal Growth & Design,2018,18(4):2046-2054.

[36] Yang F, Jie W, Wang M, et al. Growth of Single-crystal Cd0.9Zn0.1Te ingots using pressure controlled bridgman method[J].Crystals,2020,10(261):8.

[37] Broder J D, Wolff G A. A new method of GaP growth[J].Journal of the Electrochemical Society,1963,110(11):1150-1153.

[38] Triboulet R, Van K P, Didier G. Cold traveling heater method, a novel technique of synthesis, purification and growth of CdTe and ZnTe[J].Journal of Crystal Growth,1990,101(1-4):216-220.

[39] Triboulet R, Marfaing Y. CdTe growth by “multipass thm” and “sublimation thm”[J].Journal of Crystal Growth,1981,51(1):89-96.

[40] El Mokri A, Triboulet R, Lusson A, et al. Growth of large, high purity, low cost, uniform CdZnTe crystals by the “cold travelling heater method” [J].Journal of crystal growth,1994,138(1):168-174.

[41] Funaki M, Ozaki T, Satoh K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J].Nuclear Instruments and Methods in Physics Research A,1999,436:120-126.

[42] Shiraki H, Funaki M, Ando Y, et al. THM Growth and Characterization of 100 mm Diameter CdTe Single Crystals[J]. IEEE Transactions on Nuclear Science,2009,56(4):1717-1723.

[43] Chen H, Awadalla S A, Iniewski K, et al. Characterization of large cadmium zinc telluride crystals grown by traveling heater method[J].Journal of Applied Physics,2008,103(1):014903.

[44] Prokesch M, Soldner S A, Sundaram A, et al. CdZnTe detectors operating at X-ray fluxes of 100 million photons/(mm2?s) [J].IEEE Trans. Nucl. Sci.,2016,63:1854.

[45] Wei G, Wang L, Zhang J, et al. Growth and characterization of indium-doped Cd1-xZnxTe crystal by traveling heater method[J].Nucl Instrum Methods Phys. Res. Sect. A,2013,704:127-130.

[46] 梁 巍,王林军,张继军,等.移动加热器法生长CdMnTe和CdZnTe晶体的性能研究(英文)[J].人工晶体学报,2015,44(4):872-878.

[47] 陈 曦,王 涛,周伯儒,等.移动加热器法生长CZT晶体的成分及缺陷均匀性研究[J].人工晶体学报,2013,42(11):2215-2219+2229.

[48] Zhou B, Jie W, Wang T, et al. Growth and characterization of detector-grade Cd0.9Zn0.1Te crystals by the traveling heater method with the accelerated crucible rotation technique[J].Journal of Electronic Materials,2018,47(2): 1125-1130.

[49] Zhou B, Jie W, Wang T, et al. Modification of growth interface of CdZnTe crystals in THM process by ACRT[J].Journal of Crystal Growth,2018,483: 281-284.

[50] Mackenzie J, Chen H, Awadalla S A, et al. In Recent advances in THM CZT for nuclear radiation detection[J]. Materials Research Society,2009:4.

[51] Chen H, Awadalla S A, Harris F, et al. Spectral response of THM grown CdZnTe crystals[J].IEEE Transactions on Nuclear Science,2008,55(3):1567-1572.

[52] Chen H, Awadalla S A, Marthandam P, et al. In CZT device with improved sensitivity for medical imaging and homeland security applications[J].Hard X-Ray,Gamma-Ray,and Neutron Detector Physics XI,San Diego,CA,San Diego,CA,2009,7449:828514.

[53] Iniewski K.CZT sensors for Computed Tomography: from crystal growth to image quality[J].Journal of Instrumentation,2016,11(12):C12034-C12034.

杨帆, 王涛, 周伯儒, 席守智, 查钢强, 介万奇. 室温核辐射探测器用碲锌镉晶体生长研究进展[J]. 人工晶体学报, 2020, 49(4): 561. YANG Fan, WANG Tao, ZHOU Boru, XI Shouzhi, ZHA Gangqiang, JIE Wanqi. Research Progress on CdZnTe Crystal Growth for Room Temperature Radiation Detection Applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!