激光与光电子学进展, 2017, 54 (12): 120501, 网络出版: 2018-01-02   

激光干涉光刻制备976 nm分布反馈式激光器光栅 下载: 754次

Fabrication of Gratings Used in 976 nm Distributed Feedback Lasers Based on Laser Interference Lithography
作者单位
1 长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
2 长春理工大学高功率半导体激光器家重点实验室, 吉林 长春 130022
摘要
分布反馈式(DFB)半导体激光器具有优良的稳定性和单模性, 广泛应用于激光器抽运和光通信等领域。光栅作为DFB激光器的关键部件, 对激光器性能有重要的影响。针对976 nm波段设计制备了DFB激光器的光栅。基于耦合模理论优化设计光栅的结构参数, 采用激光干涉光刻和反应耦合等离子体(ICP)刻蚀技术制备光栅。通过引入表面镀膜SiO2的方法提高了光栅图形由光刻胶向衬底转移的保真度, 显著地改善了光栅的图形质量。探究了曝光时间、ICP刻蚀时间对光栅表面形貌的影响。实验结果表明, 所制备的光栅条纹分布均匀, 有较好的表面形貌, 满足预期设计目标。
Abstract
The distributed feedback (DFB) laser, featured in its stability and single-mode emission, is widely used in various domains such as pumping lasers and optical communications. As a key component in the DFB laser, the grating plays an important role in laser performance. The design and fabrication of the grating for the 976 nm DFB semiconductor laser are presented. The experiment starts with the optimization of the grating structure parameters based on the coupled mode theory. The gratings are fabricated through laser interference lithography and inductively coupled plasma (ICP) etching technique. The pattern quality of the fabricated grating is improved by the introduction of surface coating SiO2, and the fidelity of grating pattern transfer from photoresist to substrate is improved as well. Influence of exposure time and ICP etching time on grating surface morphology is investigated. The experiments show that the fabricated grating has uniformly distributed fringes and better surface morphology, and the expected design is realized.
参考文献

[1] Fessant T. Gaussian-like tapered grating quarter wave-shifted DFB semiconductor lasers for high-power single-mode operation[J]. Applied Physics B, 1998, 67(6): 769-772.

[2] Kamp M, Koeth J. High-power pulsed 976-nm DFB laser diodes[C]. SPIE, 2010, 7682: 76820T.

[3] DiLazaro T, Nehmetallah G. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array[C]. SPIE, 2017, 10110: 101100I.

[4] Inoue D, Kai F, Nishiyama N, et al. Low-bias current 10 Gbit/s direct modulation of GaInAsP/InP membrane DFB laser on silicon[J]. Optics Express, 2016, 24(16): 18571-18579.

[5] Blauvelt H A, Kwong N S, Chen P C, et al. Optimum range for DFB laser chirp for fiber-optic AM video transmission[J]. Journal of Lightwave Technology,1993, 11(1): 55-59.

[6] 王琪, 郭锦锦, 陈伟, 等. 功率稳定且波长可调谐的窄线宽分布式反馈半导体激光器[J]. 中国激光, 2017, 44(1): 0101004.

    Wang Qi, Guo Jinjin, Chen Wei, et al. Widelytunable distributed feedback semiconductor lasers with constant power and narrow linewidth[J]. Chinese J Lasers, 2017, 44(1): 0101004.

[7] 左强, 于海涛, 杨玉枝. 一种同时提高功率效率和单纵模稳定性的不对称三段周期调制光栅DFB激光器[J]. 红外与激光工程, 2013, 42(s2): 451-455.

    Zuo Qiang, Yu Haitao, Yang Yuzhi. Design of an asymmetric three corrugation-pitch-modulated DFB laser for improving output efficiency and stable single longitudinal mode operation[J]. Infrared & Laser Engineering, 2013, 42(s2): 451-455.

[8] 朱洪亮, 许晓冬, 王桓, 等. 取样光栅分布反馈激光器阵列器件研究[J]. 光电子·激光, 2010, 21(9): 1280-1282.

    Zhu Hongliang, Xu Xiaodong, Wang Huan, et al. The study of distributed feedback laser arrays based on sampled gratings[J]. Journal of Optoelectronics·Laser, 2010, 21(9): 1280-1282.

[9] Zheng J, Xia D, Tang S, et al. DFBsemiconductor laser with discrete coupling coefficient based on the equivalent technique[J]. IEEE Photonics Journal, 2015, 7(3): 1502408.

[10] Fricke J, Decker J, Maassdorf A, et al. DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency[J]. Semiconductor Science & Technology, 2017, 32(7): 075012.

[11] Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography[J]. Journal of Vacuum Science & Technology B, 1996, 14(6): 4129-4133.

[12] Vieu C, Carcenac F, Pepin A, et al. Electron beam lithography: Resolution limits and applications[J]. Applied Surface Science, 2000, 164(1): 111-117.

[13] Henk W V, Abelmann L, Hennessy T C. Laser interference lithography[J]. Lithography Principles Processes & Materials, 2011, 23(3): 133-148.

[14] Makino T, Glinski J. Effects of radiation loss on the performance of second-order DFB semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(1): 73-82.

[15] 杜宝勋. 半导体激光器原理[M]. 天津: 兵器工业出版社, 2004.

    Du Baoxun. Principles of semiconductor lasers[M]. Tianjin: Weapon Industry Press, 2004.

[16] Shams-Zadeh-Amiri A M, Hong J, Li X, et al. Second- and higher-order resonant gratings with gain or loss-Part 1: Green′s function analysis[J]. IEEE Journal of Quantum Electronics, 2000, 36(12): 1421-1430.

[17] 何安国, 喻洪麟, 朱传新, 等. 光栅莫尔条纹细分及辨向方法研究[J]. 光电工程, 2007, 34(10): 45-49.

    He Anguo, Yu Honglin, Zhu Chuanxin, et al. Subdivision and direction judgment of grating Moiré fringes[J]. Opto-Electronic Engineering, 2007, 34(10): 45-49.

白云峰, 范杰, 邹永刚, 王海珠, 海一娜, 田锟. 激光干涉光刻制备976 nm分布反馈式激光器光栅[J]. 激光与光电子学进展, 2017, 54(12): 120501. Bai Yunfeng, Fan Jie, Zou Yonggang, Wang Haizhu, Hai Yina, Tian Kun. Fabrication of Gratings Used in 976 nm Distributed Feedback Lasers Based on Laser Interference Lithography[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120501.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!