光子学报, 2019, 48 (5): 0522001, 网络出版: 2019-06-12   

大视场纳型星敏光学系统公差灵敏度研究

Tolerance Sensitivity Research of Nano-star Sensor Optical System with Large Field
张坤 1,2,3,*钟兴 1,2,3孟遥 3刘江 3
作者单位
1 中国科学院长春光学精密机械与物理研究所, 长春 130033
2 中国科学院大学, 北京 100049
3 长光卫星技术有限公司, 长春 130102
摘要
通过分析光学系统结构参数变化对像差的影响, 提出通过优化各光学表面的曲率进行光焦度合理分配来减小各表面产生的初级像差, 从而实现降低各加工装调公差灵敏度的方法.利用该方法优化了一个小像差相互补偿的焦距为25 mm, 全视场角为26°, 入瞳孔径为18 mm, 光谱范围为500 ~800 nm的大视场纳型星敏感器光学系统, 系统全长40 mm, 光学系统成像质量满足指标要求.与所设计的大像差相互补偿光学系统进行了公差灵敏度对比分析, 结果表明:光焦度合理分配后的光学系统, 第5片透镜的厚度公差对均方根弥散斑半径的影响从3.75 μm降低到0.17 μm; 第5和第6元件间隔公差对均方根弥散斑半径的影响也分别从4.36 μm和4.74 μm降低到0.25 μm和0.18 μm.蒙特卡罗分析表明, 均方根弥散斑半径小于7.59 μm的概率从23%增加到了80%.实验测试结果表明, 星敏感器在全视场范围内, 能量集中度在Φ17 μm范围内优于80%, 满足星敏感器的指标要求.
Abstract
By analyzing the influence of the optical system structural parameters on aberrations, a method was proposed to reduce the primary aberrations of each optical surface by optimizing the curvature to make a reasonable power distribution, which could reduce the processing and adjustment tolerance sensitivities. Using this method, a nano-star sensor optical system with a focal length of 25 mm, a full field of view of 26°, entrance pupil diameter of 18 mm and spectrum range of 500~800 nm was designed, which was a small aberration compensation system. The whole length of the system was 40 mm. The imaging quality of the optical system met the requirements. Tolerance sensitivity analysis was carried out for two optical systems. The results show that the influence of the thickness tolerance of the fifth lens on the Root Mean Square (RMS) spot radius decreases from 3.75 μm to 0.17 μm in the reasonable power distribution optical system; and the influence of the fifth and sixth element spacing tolerances on the RMS spot radius decreases from 4.36 μm and 4.74 μm to 0.25 μm and 0.18 μm, respectively. Monte Carlo analysis shows that the probability of the RMS spot radius of less than 7.59 μm is increased from 23% to 80%. The experimental results show that in the full field of view the energy concentration of the star sensor is better than 80% in the range of Φ17 μm, which meets the requirements.
参考文献

[1] 杨皓明, 王灵杰, 翁志成, 等. 大孔径大视场轻小型星敏感器光学系统[J]. 光学精密工程, 2007, 15(2): 151-154.

    YANG Hao-ming, WANG Ling-jie, WENG Zhi-cheng,et al. Optical system of light star tracker with wide field and large aperture[J]. Optical and Precision Engineering, 2007, 15(2): 151-154.

[2] 韩龙, 付强, 王超, 等. 大相对孔径宽光谱敏感器光学系统设计[J]. 激光与光电子学进展, 2016, 53(1): 199-202.

    HAN Long, FU Qiang, WANG Chao,et al. Design of optical system of star sensor with wide spectrum and large relative aperture[J]. Laser & Optoelectronics Progress, 2016, 53(1): 199-202.

[3] 闫佩佩, 樊学武. 大相对孔径甚高精度星敏感器光学系统设计[J]. 激光与光电子学进展, 2011, 48(9): 116-123.

    YAN Pei-pei, FAN Xue-wu. Design of optical system of very high precision star sensor with small F-number[J].Laser & Optoelectronics Progress, 2011, 48(9): 116-123.

[4] 贺鹏举, 梁斌, 张涛, 等. 大视场星敏感器标定技术研究[J]. 光学学报, 2011, 31(10):1-7.

    HE Peng-ju, LIANG Bin, ZHANG Tao, et al. Calibration method for wide field of view star sensor[J]. Acta Optica Sinica, 2011, 31(10): 1-7.

[5] 吴峰, 沈为民. 折反式大视场星敏感器光学系统设计[J]. 光学技术, 2004, 30(2): 142-145.

    WU Feng, SHEN Wei-min. Design of a catadioptric system for star sensors with wide field of view[J]. Optical Technique, 2004, 30(2): 142-145.

[6] 郑月英, 钱唯德, 杜彦卫, 等. 一种基于大视场星敏感器的定姿方法[J]. 航天控制, 2008, 26(4): 40-42.

    ZHENG Yue-ying, QIAN Wei-de, DU Yan-wei, et al. An attitude determination method based on wide field of view star sensors[J]. Aerospace Control, 2008, 26(4): 40-42.

[7] WEI M S, XING F, YOU Z. A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images[J].Light: Science & Applications, 2018, 75: 18006.

[8] ZHANG S, XING F, SUN T, et al. Novel approach to improve the attitude update rate of a star tracker[J]. Optics Express, 2018, 26(5): 5164-5181.

[9] SUN T, XING F, YOU Z. Optical system error analysis and calibration method of high-accuracy star trackers[J].Sensors, 2013, 13(4): 4598-4623.

[10] 刘健, 郝云彩, 常军, 等. 无热化星敏感器光学系统设计[J]. 北京理工大学学报, 2010, 30(2): 223-225+230.

    LIU Jian, HAO Yun-cai, CHANG Jun,et al. Athermalization of star tracker system[J]. Transactions of Beijing Institute of Technology, 2010, 30(2): 223-225+230.

[11] 吕博, 刘伟奇, 张大亮, 等. 折反射式大入瞳星敏感器光学系统设计[J]. 中国激光, 2014, 41(7): 276-283.

    LV Bo, LIU Wei-qi, ZHANG Da-liang,et al. Optical system design of large entrance pupil catadioptric star sensor[J]. Chinese Journal of Lasers, 2014, 41(7): 276-283.

[12] 王红, 田铁印. 三线阵测绘相机光学系统的设计和公差分析[J]. 光学精密工程, 2011, 19(7): 1444-1450.

    WANG Hong, TIAN Tie-yin. Design of three line array mapping camera and its tolerance analysis[J].Optical and Precision Engineering, 2011, 19(7): 1444-1450.

[13] 孙圆圆, 李艳秋, 曹振. 超大数值孔径极紫外光刻物镜的公差分析[J]. 激光与光电子学进展, 2015, 52(12): 221-227.

    SUN Yuan-yuan, LI Yan-qiu, CAO Zhen. Tolerance analysis of high-numerical aperture extreme ultraviolet lithographic objective[J].Laser & Optoelectronics Progress, 2015, 52(12): 221-227.

[14] 邓枰湖, 林峰. 光学设计中降低公差灵敏度的方法[J]. 激光与光电子学进展, 2015, 52(11): 182-189.

    DENG Ping-hu, LIN Feng. Method of tolerance sensitivity reduction of optical design[J].Laser & Optoelectronics Progress, 2015, 52(11): 182-189.

[15] 许伟才, 黄玮, 杨旺. 投影光刻物镜倍率的公差分析与补偿[J]. 光学学报, 2011, 31(11): 265-268.

    XU Wei-cai, HUANG Wei, YANG Wang. Magnification tolerancing and compensation for the lithographic projection lens[J].Acta Optica Sinica, 2011, 31(11): 265-268.

[16] 栗孟娟, 廖志波, 王春雨. 小口径高精度折射式光学系统装调公差的分析与控制[J]. 应用光学, 2015, 36(2): 277-281.

    LI Meng-juan, LIAO Zhi-bo, WANG Chun-yu. Analysis and control on assemblage tolerance in small-aperture high-precision refractive optical system[J].Journal of Applied Optics, 2015, 36(2): 277-281.

[17] 张远健, 唐勇, 王鹏, 等. 光学系统设计中降低公差灵敏度的方法[J]. 光电工程, 2011, 38(10): 127-133.

    ZHANG Yuan-jian, TANG Yong, WANG Peng,et al. Method of tolerance sensitivity reduction of optical system design[J]. Opto-Electronic Engineering, 2011, 38(10): 127-133.

[18] BATES R. Performance and tolerance sensitivity optimization of highly aspheric miniature camera lenses[C]. Optical System Alignment, Tolerancing, & Verification IV, Optical System Alignment, Tolerancing, and Verification IV, 2010.

[19] ISSHIKI M, SINCLAIR D, KANEKO S. Lens design: global optimization of both performance and tolerance sensitivity[C]. International Optical Design Conference, International Society for Optics and Photonics, 2006.

[20] CHENG Xue-min, WANG Yong-tian, HAO Qun. Study on tolerance sensitivity reduction in lens optimization[C]. SPIE, 2005, 5638: 36-42.

[21] 王之江. 光学设计理论基础[M]. 北京: 科学出版社. 1985.

    WANG Zhi-jiang. The theoretical basis of optical design[M]. Beijing: Science Press. 1985.

[22] 赵阳, 巩岩, 胡宜宁. 变焦距光学系统降低公差灵敏度的方法[J]. 光电工程, 2009, 36(7): 121-125.

    ZHAO Yang, GONG Yan, HU Yi-ning. Method of tolerance sensitivity reduction of zoom optical system[J].Opto-Electronic Engineering, 2009, 36(7): 121-125.

[23] 郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社. 2011.

    YU Dao-yin, TAN Heng-ying. Engineering optics[M]. Beijing: China Machine Press. 2011.

张坤, 钟兴, 孟遥, 刘江. 大视场纳型星敏光学系统公差灵敏度研究[J]. 光子学报, 2019, 48(5): 0522001. ZHANG Kun, ZHONG Xing, MENG Yao, LIU Jiang. Tolerance Sensitivity Research of Nano-star Sensor Optical System with Large Field[J]. ACTA PHOTONICA SINICA, 2019, 48(5): 0522001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!