激光与光电子学进展, 2018, 55 (10): 102201, 网络出版: 2018-10-14   

紫外工业检测光学系统设计及公差分析 下载: 670次

Design and Tolerance Analysis of UV Industrial Inspection Optical System
作者单位
福建师范大学光电与信息工程学院福建省光子技术重点实验室, 福建 福州 350007
摘要
为满足紫外波段对产品的检测与识别需求, 设计出一套宽光谱、较大视场、较大光圈、结构紧凑的紫外工业检测光学系统, 要求紫外工业检测镜头的工作波长为240~320 nm, 全视场角为40°, 系统焦距为15 mm, F数为3, 系统总长小于60 mm。该系统采用MS20-UV型紫外电荷耦合器件(CCD), 其分辨率为1920 pixel×1080 pixel, 像元尺寸为5.48 μm×5.48 μm。从成本及像质方面综合考虑, 最后采用全球面透射式且非胶合方案。该系统采用反摄远物镜为初始结构, 利用Zemax光学软件进行设计; 结合工艺要求对设计结果进行公差分析, 确定公差误差的来源, 并进行相关结构的优化, 给出优化前后的蒙特卡罗模拟结果; 最终设计出全视场调制传递函数(MTF)在100 lp/mm范围内均大于0.5、场曲小于0.1 mm、畸变小于1.3%的紫外镜头。与其他紫外系统相比, 设计的系统具有成像质量高、分辨率高、畸变低、焦距短、结构紧凑的优点。
Abstract
In order to meet the detection and identification requirements of products in the ultraviolet (UV) band, we design a set of UV industrial inspection optical system with wide spectrum, large field of view, large aperture and compact structure. Its design requirements are: UV industrial inspection lens with working wavelength of 240-320 nm, full field of view angle of 40°, system focal length of 15 mm, F number of 3, and total system length of less than 60 mm. The system uses MS20-UV type UV charge coupled device (CCD) with a resolution of 1920 pixel×1080 pixel, pixel size of 5.48 μm×5.48 μm. Considering the cost and image quality, the design adopts the global transmissive and non-glued solution. The system uses an anti-telescopic objective lens as the initial structure and uses Zemax optical software to design. The tolerance analysis is performed on the design results to determine the source of the tolerance error in combination with the requirements of the process requirement. And the relevant structure is optimized. Monte-Carlo simulation results before and after optimization are compared. Finally, the UV lens is designed with the modulation transfer function (MTF) of full field of view of more than 0.5 in the range of 100 lp/mm, the field curvature of less than 0.1 mm and the distortion of less than 1.3%. Compared with other UV systems, this system has the advantages of high image quality, high resolution, low distortion, short focal length and compact structure.
参考文献

[1] 靳贵平, 庞其昌. 紫外成像检测技术[J]. 光子学报, 2003, 32(3): 294-297.

    Jin G P, Pang Q C. The key points of UV imaging and detecting system[J]. Acta Photonica Sinica, 2003, 32(3): 294-297.

[2] 滕鹤松. 紫外成像技术及其应用[J]. 光电子技术, 2001, 21(4): 294-297.

    Teng H S. UV imaging technology and its application[J]. Optoelectronic Technology, 2001, 21(4): 294-297.

[3] 靳贵平, 庞其昌. 紫外指纹检测仪的研制[J]. 光学 精密工程, 2003, 11(2): 198-202.

    Jin G P, Pang Q C. Development of UV fingerprint detector[J]. Optics and Precision Engineering, 2003, 11(2) : 198-202.

[4] 常振, 王煜, 司福祺, 等. 基于科学级CCD的紫外成像系统设计与实现[J]. 中国激光, 2017, 44(8): 0804002.

    Chang Z, Wang Y, Si F Q, et al. Design and implementation of ultraviolet imaging system based on scientific grade CCD[J]. Chinese Journal of Lasers, 2017, 44(8): 0804002.

[5] 刘火平, 尹达一, 张荣杰, 等. 地面紫外探测高空高速再入目标分析与验证[J]. 光学学报, 2017, 37(12): 1211004.

    Liu H P, Yin D Y, Zhang R J, et al. Feasibility analysis and verification of high speed reentry target on ground ultraviolet detection[J]. Acta Optica Sinica, 2017, 37(12): 1211004.

[6] 贾辉, 石璐珊, 梁征, 等. 紫外光电探测器的发展研究[J]. 江西科学, 2017, 35(2): 296-300.

    Jia Hui, Shi L S, Liang Z, et al. Research on the development of ultraviolet photodetectors[J]. Jiangxi Science, 2017, 35(2): 296-300.

[7] 于磊, 林冠宇, 于向阳. 空间高层大气遥感远紫外成像光谱仪的光学系统[J]. 光学学报, 2013, 33(1): 0122001.

    Yu L, Lin G Y, Yu X Y. Optical system of far ultraviolet imaging spectrometer for space-based upper atmosphere remote sensing[J]. Acta Optica Sinica, 2013, 33(1): 0122001.

[8] 韦晓孝, 许峰, 余建军. 高分辨率空间同轴偏视场三反光学系统设计[J]. 中国激光, 2012, 39(4): 0416002.

    Wei X X, Xu F, Yu J J. Design of space coaxial field-bias three-mirror optical system with high resolution[J]. Chinese Journal of Lasers, 2012, 39(4): 0416002.

[9] 朱杨, 张新, 伍雁雄, 等. 紫外宽幅离轴四反光学系统设计及其杂散光分析[J]. 中国激光, 2015, 42(2): 0216001.

    Zhu Y, Zhang X, Wu Y X, et al. Optical design and stray light analysis for ultraviolet board width off-axis four mirrors optical system[J]. Chinese Journal of Lasers, 2015, 42(2): 0216001.

[10] Eijiroh T, Li F. Ultraviolet imaging system: US7057804B2[P]. 2006-06-06.

[11] 石恩涛, 王咏梅, 付利平. 羽流紫外辐射监视单元光学系统设计[J]. 激光与光电子学进展, 2016, 53(11): 112202.

    Shi E T, Wang Y M, Fu L P. Optical system design of plume ultraviolet radiation monitor unit[J]. Laser & Optoelectronics Progress, 2016, 53(11): 112202.

[12] 张鸿佳, 马军, 朱海宇, 等. “日盲”紫外电晕检测变焦光学系统设计[J]. 激光与光电子学进展, 2014, 51(10): 102201.

    Zhang H J, Ma J, Zhu H Y, et al. Design of “solar blind” ultraviolet zoom optical system used in corona detection[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102201.

[13] 李博. 靶场紫外望远系统光学设计[J]. 中国激光, 2014, 41(10): 1016001.

    Li B. Optical design of target range UV telescope system[J]. Chinese Journal of Lasers, 2014, 41(10): 1016001.

何丽鹏, 林峰. 紫外工业检测光学系统设计及公差分析[J]. 激光与光电子学进展, 2018, 55(10): 102201. He Lipeng, Lin Feng. Design and Tolerance Analysis of UV Industrial Inspection Optical System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!