激光与光电子学进展, 2018, 55 (10): 102601, 网络出版: 2018-10-14   

基于4π聚焦系统提高光学捕获稳定性 下载: 719次

Enhancement of Optical Trapping Stability Based on 4π Focusing System
作者单位
安徽理工大学力学与光电物理学院, 安徽 淮南 232001
摘要
光镊技术是利用高度聚焦的激光束所形成的梯度力势阱对微纳粒子进行捕获和操控的技术, 在生物、物理、化学和医学等领域有着非常广泛的应用。基于4π聚焦系统, 理论研究了径向偏振高斯光束的紧聚焦特性及其对金属微粒的辐射力, 并与传统的单透镜聚焦系统结果进行比较; 还详细讨论了不同离焦和离轴距离对光阱刚度的影响。研究结果表明, 与传统的单透镜聚焦系统相比, 4π聚焦系统通过选择合适的光学参量, 可以获得具有三维球形结构的聚焦光斑, 显著增大了横向和纵向的梯度力, 从而显著增强光镊系统捕获金属微粒的稳定性。
Abstract
Optical tweezer has become a powerful and flexible tool for trapping and manipulating the micro-nano particles through a gradient force well formed by a highly focused laser beam, and it has a wide applications in the fields of biology, physics, chemistry, and medicine. Based on the 4π focusing system, the tight focusing characteristics of the radially polarized Gaussian beam and its radiation force to the metal particles are theoretically studied and compared with the results of traditional single-lens focusing system. Furthermore, the influence of the off-focus distance and the off-axis distance on the trap stiffness is also investigated in detail. Numerical results show that a focal spot with three-dimensional and spherical structure can be obtained in the 4π focusing system via the suitable parameters. This spherical focal spot can largely enhance the transverse and longitudinal trapping forces, and consequently enhance the trapping stability of metal particles of optical tweezer system.
参考文献

[1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

[2] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[3] Dholakia K, Reece P, Gu M. Optical micromanipulation[J]. Chemical Society Reviews, 2008, 37(1): 42-55.

[4] Ziegler F, Lim N C, Mandal S S, et al. Knotting and unknotting of a protein in single molecule experiments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7533-7538.

[5] Li S X, Chen G, Zhang Y J, et al. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques[J]. Optics Express, 2014, 22(21): 25895-25908.

[6] Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.

[7] 梁言生, 姚保利, 马百恒, 等. 基于纯相位液晶空间光调制器的全息光学捕获与微操纵[J]. 光学学报, 2016, 36(3): 0309001.

    Liang Y S, Yao B L, Ma B H, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2016, 36(3): 0309001.

[8] 郭志和, 刘泽田, 陈启敏, 等. 激光整形器件在光镊中的应用及进展[J]. 激光与光电子学进展, 2017, 54(9): 090004.

    Guo Z H, Liu Z T, Chen Q M, et al. Application and progress of laser shaping devices in optical tweezers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090004.

[9] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[10] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

[11] Zhang Y J, Ding B F, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam[J]. Physical Review A, 2010, 81(2): 023831.

[12] Huang L, Guo H L, Li J F, et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 2012, 37(10): 1694-1696.

[13] Li M M, Yan S H, Yao B L, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604-20612.

[14] 刘雪宁, 王吉明, 赫崇君,等. 不同数值孔径下调控矢量光束聚焦场的反向构建[J]. 光学学报, 2014, 34(1): 0114004.

    Liu X N, Wang J M, He C J, et al. Backward focus engineering with controlled cylindrical vector beams under different numerical apertures[J]. Acta Optica Sinica, 2014, 34(1): 0114004.

[15] 刘键, 杨艳芳, 何英, 等. 基于圆偏振涡旋光束强聚焦的平顶光束的构成[J].光学学报, 2014, 34(5): 0526003.

    Liu J, Yang Y F, He Y, et al. Flattop beam creation based on strong focusing of circularly polarized vortex beams[J]. Acta Optica Sinica, 2014, 34(5): 0526003.

[16] 宫洪旭, 贾信庭, 陶珺, 等. 基于马赫-曾德尔干涉仪生成矢量涡旋光束[J]. 中国激光, 2018, 45(1): 0105001.

    Gong H X, Jia X T, Tao J, et al. Generating of vector vortex beams based on Mach-Zender interferometer[J]. Chinese Journal of Lasers, 2018, 45(1): 0105001.

[17] 徐强, 李金刚, 王旭, 等. 拉盖尔高斯光束矢量远场单球粒子的散射特性[J]. 中国激光, 2018, 45(6):0605003.

    Xu Q, Li J G, Wang X, et al. Scattering properties of vectorial far-field Laguerre-Gaussian beam by single spherical particle[J]. Chinese Journal of Lasers, 2018, 45(6): 0605003.

[18] Bokor N, Davidson N. Toward a spherical spot distribution with 4π focusing of radially polarized light[J]. Optics Letters, 2004, 29(17): 1968-1970.

[19] Chen W B, Zhan Q W. Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy[J]. Optics Letters, 2009, 34(16): 2444-2446.

[20] Yan S H, Yao B L, Rupp R. Shifting the spherical focus of a 4Pi focusing system[J]. Optics Express, 2011, 19(2): 673-678.

[21] Chen Z Y, Zhao D M. 4Pi focusing of spatially modulated radially polarized vortex beams[J]. Optics Letters, 2012, 37(8): 1286-1288.

[22] 常强, 杨艳芳, 何英, 等. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究[J]. 物理学报, 2013, 62(10): 104202.

    Chang Q, Yang Y F, He Y, et al. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system[J]. Acta Physica Sinica, 2013,62(10): 104202.

[23] Cui W J, Song F, Song F F, et al. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam[J]. Optics Express, 2016, 24(18): 20062.

[24] Wang X Y, Rui G H, Gong L P, et al. Manipulation of resonant metallic nanoparticle using 4Pi focusing system[J]. Optics Express, 2016, 24(21): 24143-24152.

[25] Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: 1959, 253(1274): 358-379.

[26] Zhang Y J, Ding B F. Magnetic field distribution of a highly focused radially-polarized light beam[J]. Optics Express, 2009, 17(24): 22235-22239.

[27] Chen G Y, Song F, Wang H T. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre-Gaussian radially polarized beam[J]. Optics Letters, 2013, 38(19): 3937-3940.

[28] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

[29] Zhang Y J, Suyama T, Ding B F. Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam[J]. Optics Letters, 2010, 35(8): 1281-1283.

徐华锋, 崔巍, 张洲. 基于4π聚焦系统提高光学捕获稳定性[J]. 激光与光电子学进展, 2018, 55(10): 102601. Xu Huafeng, Cui Wei, Zhang Zhou. Enhancement of Optical Trapping Stability Based on 4π Focusing System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102601.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!