红外与毫米波学报, 2017, 36 (6): 790, 网络出版: 2018-01-04   

HEMT太赫兹探测器的二维电子气特性分析

2DEG characteristics of HEMT THz detector
作者单位
1 中国人民解放军军械工程学院 导弹工程系, 河北 石家庄 050003
2 中国科学院半导体研究所 超晶格实验室, 北京 100083
3 中国科学院大学 材料科学与光电技术学院, 北京 100049
4 西北大学 光子学与光子技术研究所, 陕西 西安 710069
摘要
采用分子束外延技术(MBE)对GaAs/AlxGa1-xAs二维电子气(2DEG)样品进行了制备, 样品制备过程中, 通过改变Al的组分含量、隔离层厚度、对比体掺杂与δ掺杂两种方式, 在300 K条件下对制备的样品进行了霍尔测试, 获得了室温迁移率7.205E3cm2/Vs, 载流子浓度为1.787E12/cm3的GaAs/AlxGa1-xAs二维电子气沟道结构, 并采用Mathematica软件分别计算了不同沟道宽度时300 K、77 K温度下GaAs基HEMT结构的太赫兹探测响应率, 为HEMT场效应管太赫兹探测器的研究和制备提供了参考依据.
Abstract
The 2DEG samples of GaAs/AlxGa1-xAs was prepared by adopting MBE. In the process of sample preparation, by changing the constituent content of Al and the thickness of the isolation layer and comparing the body doping with the delta doping, we perform the Hall test under the condition of 300 K the migration rate of room temperature is 7.205×103 cm2/Vs and the carrier concentration is the open groove structure of 2DEG of GaAs/AlxGa1-xAs, which is 1.787×1012/cm3. Besides, the software of Mathematica is adopted to respectively calculate the THz response rates of GaAs-based HEMT structures with different channel widths under the temperature of 300 K and 77 K, which have provided the references for the research and preparation of HEMT THz detectors.
参考文献

[1] CAO Jun-Cheng. Semiconductor terahertz sources, detectors and applications [M]. Beijing: Science Press(曹俊诚. 半导体太赫兹源、探测器与应用. 北京:科学出版社), 2012.

[2] GUO Chun-Yan, XU Jian-Xing, PENG Hong-Ling, et al. Transfer process of LT-GaAs epitaxial films for on-chip terahertz antenna integrated device [J]. Journal of Infrared and Millimeter Waves(郭春妍, 徐建星, 彭红玲,等. 片上太赫兹天线集成器件LT-GaAs外延转移工艺. 红外与毫米波学报), 2017, 36(2):220-224,234.

[3] QIN Hua, HUANG Yong-Dan, SUN Jian-Dong et al. Terahertz-wave devices based on plasmons in two-dimensional electron gas [J]. Chinese Optics(秦华, 黄永丹, 孙建东, 等. 二维电子气等离激元太赫兹波器件. 中国光学), 2017, 10(1):51-66.

[4] Sizov F, Rogalski A. THz detectors [J]. Progress in Quantum Electronics, 2010, 34(5): 278-347.

[5] Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current [J]. Physical Review Letters, 1993, 71(15):2465-2468.

[6] WANG Lin, CHEN Xiao-Shuang, HU Wei-Da, et al. The plasmonic resonant absorption in GaN double-channel high electron mobility transistors[J]. Applied Physics Letters, 2011, 99(6):1391.

[7] GUO Nan, HU Wei-Da, CHEN Xiao-Shuang, et al. Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates[J]. Optics Express, 2013, 21(2):1606.

[8] Lu J Q, Shur M S, Hesler J L, et al. Terahertz detector utilizing two-dimensional electronic fluid[J]. IEEE Electron Device Letters, 1998, 19(10):373-375.

[9] NIU Zhi-Chuan, HAN Qin, NI Hai-Qiao, et al. Material growth and device fabrication of GaAs based 1.3μm GaInNAs quantum well laser diodes [J]. Chinese Journal of Semiconductors(牛智川, 韩勤, 倪海桥, 等. 1.3μm GaAs基GaInNAs量子阱生长与激光器研制.半导体学报) 2005, 26(9):1860-1864.

[10] Duque C A, Akimov V, Demediuk R, et al. About possible THz modulator on the base of delta-doped QWs [J]. Superlattices and Microstructures. 2015, 5(11):5-11.

[11] Ando T. Self-consistent results for a GaAs/AlxGa1-xAs heterojunciton. II. low temperature mobility [J]. Journal of the Physical Society of Japan, 1982, 51(12):3900-3907.

[12] LI Yong, LIU Feng, ZHONG Wen-Zhong, et al. Two-dimensional Electron Gas Electron Mobility Analysis of the Quantum Dots Field Effect Single Photon Detector [J]. Optical Technique(李勇, 刘锋, 钟文忠, 等. 量子点场效应单光子探测器二维电子气载流子浓度研究. 光学技术), 2017, 43(2):122-125.

[13] Stern F. Self-consistent results for n-type Si inversion layers [J]. Physical Review B Condensed Matter, 1972, 5(12):4891-4899.

[14] WANG Hong-Pei, WANG Guang-Long, Yu Ying. et al. Properties of δ AlxGa1-xAs 2DEG with embedded InAs quantum dots [J]. Acta Phys. Sin.(王红培, 王广龙, 喻颖, 等. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报), 2013, 62(20):422-427.

[15] Beaton D A, Alberi K, Fluegel B, et al. Precise determination of the direct-indirect band gap energy cross-over composition in AlxGa1-xAs [J]. Japanese Journal of Applied Physics, 2013, 6(7):249-257.

[16] Daoudi M, Dhifallah I, Ouerghi A, et al. Si-delta doping and spacer thickness effects on the electronic properties in Si-delta-doped AlGaAs/GaAs HEMT structures [J]. Superlattices & Microstructures, 2012, 51(4):497-505.

[17] WANG Li-Min, CAO Jun-Cheng. Current characteristics of high-electron-mobility transistors driven by a terahertz field and magnetic field [J]. Journal of Semiconductors(王立敏, 曹俊诚. 外加太赫兹场与磁场作用下的高电子迁移率晶体管电流特性. 半导体学报), 2008, 29(7):1357-1359.

[18] Satou A, Ryzhii V, Khmyrova I, et al. Characteristics of a terahertz photomixer based on a high-electron mobility transistor structure with optical input through the ungated regions [J]. Journal of Applied Physics, 2004, 95(4):2084-2089.

[19] Dyakonov M, Shur M. Plasma wave electronics. Novel terahertz devices using two dimensional electron fluid, special issue on future directions in device science and technologies [J]. IEEE Transactions on Electron Devices, 1996, 43(10):1640-1645.

[20] Rudin S, Rupper G, Gutin A, et al. Theory and measurement of plasmonic terahertz detector response to large signals [J]. Journal of Applied Physics, 2014, 115(6):1-11.

[21] Seliuta D, Kasalynas I, Tamosiunas V, et al. Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature [J]. Electronics Letters, 2006, 42(14):825-827.

李金伦, 崔少辉, 徐建星, 袁野, 苏向斌, 倪海桥, 牛智川. HEMT太赫兹探测器的二维电子气特性分析[J]. 红外与毫米波学报, 2017, 36(6): 790. LI Jin-Lun, CUI Shao-Hui, XU Jian-Xing, YUAN Ye, SU Xiang-Bin, NI Hai-Qiao, NIU Zhi-Chuan. 2DEG characteristics of HEMT THz detector[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 790.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!