Journal of Innovative Optical Health Sciences, 2011, 4 (3): 325, Published Online: Jan. 10, 2019  

HIGH-SPEED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY SIGNAL PROCESSING WITH TIME-DOMAIN INTERPOLATION USING GRAPHICS PROCESSING UNIT

XIQI LI 1,2,3GUOHUA SHI 1,2,3,*LING WEI 1,2,3ZHIHUA DING 4YUDONG ZHANG 1,2
Author Affiliations
1 The Laboratory on Adaptive Optics Institute of Optics and Electronics Chinese Academy of Sciences, Chengdu 610209, China
2 The Key Laboratory on Adaptive Optics Chinese Academy of Sciences, Chengdu 610209, China
3 Graduate School of Chinese Academy of Sciences Beijing 100080, China
4 State Key Laboratory of Modern Optical Instrumentation Zhejiang University, Hangzhou 310027, China
Abstract
Sensitivity and data processing speed are important in spectral domain Optical Coherence Tomography (SD-OCT) system. To get a higher sensitivity, zero-padding interpolation together with linear interpolation is commonly used to re-sample the interference data in SD-OCT, which limits the data processing speed. Recently, a time-domain interpolation for SD-OCT was proposed. By eliminating the huge Fast Fourier Transform Algorithm (FFT) operations, the operation number of the time-domain interpolation is much less than that of the zero-padding interpolation. In this paper, a numerical simulation is performed to evaluate the computational complexity and the interpolation accuracy. More than six times acceleration is obtained. At the same time, the normalized mean square error (NMSE) results show that the time-domain interpolation method with cut-off length L = 21 and L = 31 can improve about 1.7 dB and 2.1 dB when the distance mismatch is 2.4mm than that of zero-padding interpolation method with padding times M = 4, respectively. Furthermore, this method can be applied the parallel arithmetic processing because only the data in the cut-off window is processed. By using Graphics Processing Unit (GPU) with compute unified device architecture (CUDA) program model, a frame (400 A-lines × 2048 pixels × 12 bits) data can be processed in 6 ms and the processing capability can be achieved 164,000 line/s for 1024-OCT and 71,000 line/s for 2048-OCT when the cut-off length is 21. Thus, a high-sensitivity and ultra-high data processing SD-OCT is realized.
References

[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pulifito, "Optical coherence tomography," Science. 254, 1178-1181 (1991).

[2] Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, G. Shi, "Time-domain interpolation for Fourier-domain optical coherence tomography," Opt. Lett. 34, 1849-1851 (2009).

[3] J. G. Fujimoto, Chapter 1 in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds., Marcel Dekker, Inc. (2002).

[4] R. Leitgeb, C. Hitzenberger, A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Exp. 11, 889-894 (2003).

[5] M. Choma,M. Sarunic, C. Yang, J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Expres. 11, 2183-2189 (2003).

[6] S. Makita, "High-speed spectral-domain optical coherence tomography and in vivo human eye imaging," University of Tsukuba. DA04252(2006).

[7] U. Haberland, P. Jansen, V. Blazek, H. J. Schmitt, "Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunale near-infrared laser," in Coherence Domain Optical Methods in Biomdical Science and Clinical Applications, Proc. SPIE. 2981, 20-28 (1997).

[8] S. R. Chinn, E. A. Swanson, J. G. Fujimoto, "Optical coherence tomography using a frequencytunable optical source," Opt. Lett. 22, 340-342 (1997).

[9] A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).

[10] B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, "Ultrahigh speed spectral/fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express. 16, 15149-15169 (2008).

[11] M. Wojtkowski, "High-speed optical coherence tomography: Basics and applications," Appl. Opt. 39, D30-D61 (2010).

[12] R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express. 12, 2156-2165 (2004).

[13] S. Yan, D. Piao, Y. Chen, Q. Zhu, "Digital signal processor-based real-time optical Doppler tomography system," J. Biomed. Opt. 9, 454-463 (2004).

[14] J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, Z. Chen, "Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor," J. Biomed Opt. 13, 030506 (2008).

[15] T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008).

[16] G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365-6370 (2009).

[17] NVIDIA CUDA. http://developer.nvidia.com/ object/cuda.html

[18] NVIDIA CUDA Computer Unified Device Architecture: Programming Guide, Version 2.0beta2, June 2008.

[19] Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506 (2009).

[20] K. Zhang, J. U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express, 18, 11772-11784 (2010).

[21] Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, H. Koseki, "Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units," Appl. Opt, 49, 4756-4762 (2010).

[22] M. Wojtkowskj, R. Leitgeb, A. K. Y. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).

[23] Z. Hu, Y. Pan, A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt. 46, 8499-8505 (2007)

[24] M. Wojtkowskj, R. Leitgeb, A. K. Y. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).

[25] C. Dorrer, N. Belabas, J.-P. Likforman, M. Joffre, "Spectral resolution and sampling issues in Fouriertransform spectral interferometry," J. Opt. Soc. Am. B. 17, 1795-1802 (2000).

[26] K. Wang, Z. Ding, "Spectral calibration in spectral domain optical coherence tomography," Chin. Opt. Lett. 6, 902-904 (2008).

[27] C. J. Sansonetti,M. L. Salit, J. Reader, "Wavelengths of spectral lines in mercury pencil lamps," Appl. Opt. 35, 74-77 (1996).

[28] R. K. Wang, Z. H. Ma, "A practical approach to eliminate autocorrelation artifacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).

XIQI LI, GUOHUA SHI, LING WEI, ZHIHUA DING, YUDONG ZHANG. HIGH-SPEED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY SIGNAL PROCESSING WITH TIME-DOMAIN INTERPOLATION USING GRAPHICS PROCESSING UNIT[J]. Journal of Innovative Optical Health Sciences, 2011, 4(3): 325.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!