人工晶体学报, 2020, 49 (4): 600, 网络出版: 2020-06-15  

超导水平磁场结构对300 mm直拉硅单晶固液界面影响的三维数值模拟

Three-Dimensional Numerical Simulation on the Effect of Superconducting Horizon Magnetic Field Structures on Solid-Liquid Interface of 300 mm Czochralski Monocrystalline Silicon
作者单位
西安理工大学,晶体生长设备及系统集成国家地方联合工程中心,陕西省复杂系统控制与智能信息处理重点实验室,西安 710048
摘要
针对不同超导水平磁场结构的磁力线分布对300 mm直拉硅单晶固液界面影响问题,本文采用一种基于格子Boltzmann方法的耦合热格子模型,解决温度场与速度场耦合建模问题,并对不同结构的超导磁场作用下的晶体生长进行了三维数值模拟。结果表明,采用单磁力线分布的超导磁场结构使得固液界面氧含量降低,但是容易引起熔体内部热分布不均匀;采用双磁力线分布结构能够有效地改善熔体内部沿晶体生长的轴向温度梯度和沿固液界面的径向温度梯度,然而,其对固液界面氧含量抑制作用较小。当晶转、埚转工艺作用时,超导单磁力线水平磁场结构明显优于超导双磁力线水平磁场结构,固液界面形状对称性随磁感应强度的增加而增强。
Abstract
Aiming at the influence of the magnetic field line distribution of different superconducting transverse magnetic field structures on the solid-liquid interface of 300 mm Czochralski monocrystalline silicon, a coupling thermal lattice model based on the lattice Boltzmann method was adopted to solve the problem of coupling modeling of temperature and velocity fields. And three-dimensional numerical simulation of crystal growth under the superconducting magnetic field of the different structures was conducted. The result indicate that the oxygen content at solid-liquid interface is successfully lowered through the adoption of superconducting magnetic field with single magnetic line distribution; however, the heat distribution inside the melt is likely to be uneven. Adopting double magnetic line distribution may effectively perfect the axial temperature gradient that grows along the crystal and the radial temperature gradient that grows along the solid-liquid interface inside the melt. However, it has less restraining effect on the oxygen content at solid-liquid interface. When the crystal rotation and the crucible rotating were applied, the superconducting single magnetic line magnetic field structure is much better than superconducting double magnetic line magnetic field structure; besides, as the magnetic induction increases, the shape symmetry of the solid-liquid interface increases.
参考文献

[1] Teng R, Li Y, Cui B, et al. Experiment and numerical simulation of melt convection and oxygen distribution in 400 mm Czochralski silicon crystal growth[J].Rare Metals,2017,36(2):134-141.

[2] 刘 丁,赵小国,赵 跃.直拉硅单晶生长过程建模与控制研究综述[J].控制理论与应用,2017,34(1):1-12.

[3] Chen J C, Chiang P Y, Nguyen T H T, et al. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field[J].Journal of Crystal Growth,2016,22(452):6-11.

[4] Li P T, Ren S Q, Jiang D C, et al. Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification[J].Journal of Crystal Growth,2016,22(437):14-19.

[5] 李 岩,李 进,景华玉,等.磁场结构对Ф300 mm直拉单晶硅碳杂质的影响研究[J].人工晶体学报,2017,46(11):30-35.

[6] Wang L, Horiuchi T, Sekimoto A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC[J].Journal of Crystal Growth,2018,5(498):140-147.

[7] Zhang J, Ren J C, Liu D. Effect of crucible rotation and crystal rotation on the oxygen distribution at the solid-liquid interface during the growth of Czochralski monocrystalline silicon under superconducting horizontal magnetic field[J].Results in Physics,2019,13.

[8] Guan X J, Zhang X Y. Simulation of V/G During Φ450 mm Czochralski grown silicon single crystal growth under the different crystal and crucible rotation rates[J].International Symposium on Materials Application and Engineering,2016,67:02002.

[9] Zheng Z, Seto T, Kim S, et al. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate[J].Journal of Crystal Growth,2018,3(492):105-113.

[10] Su W, Zuo R, Lu J, et al. Numerical and experimental studies on the black periphery wafer in CZ Si growth[J].Journal of Crystal Growth,2014,388:42-47.

[11] Atia A, Ghernaout B, Bouabdallah S, et al. Three-dimensional oscillatory mixed convection in a Czochralski silicon melt under the axial magnetic field[J].Applied Thermal Engineering,2016,7(105):704-715.

[12] Grants I, Pal J, Gerbeth G. Physical modelling of Czochralski crystal growth in horizontal magnetic field[J].Journal of Crystal Growth,2017,470(22):71-78.

[13] Zhang J, Liu D, Zhao Y, et al. Impact of heat shield structure in the growth process of czochralski silicon derived from numerical simulation[J].Chinese Journal of Mechanical Engineering,2014,27(3):504-510.

[14] Jung T, Seebeck J, Friedrich J. Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process[J].Journal of Crystal Growth,2013,10(368):72-80.

[15] 张 晶,刘 丁,赵 跃,等.四极磁场下大尺寸直拉硅单晶生长三维数值模拟[J].材料热处理学报,2015(9):241-246.

[16] Zhang N, Liu D. Numerical simulation of MHD oscillatory mixed convection in CZ crystal growth by Lattice Boltzmann method[J].Results in Physics,2018(10):882-890.

[17] 黄伟超,刘 丁,焦尚彬,等.直拉法晶体生长过程非稳态流体热流耦合[J].物理学报,2015,64(20):421-430.

[18] 闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1993.

张晶, 杜燕军, 刘丁, 任俊超. 超导水平磁场结构对300 mm直拉硅单晶固液界面影响的三维数值模拟[J]. 人工晶体学报, 2020, 49(4): 600. ZHANG Jing, DU Yanjun, LIU Ding, REN Junchao. Three-Dimensional Numerical Simulation on the Effect of Superconducting Horizon Magnetic Field Structures on Solid-Liquid Interface of 300 mm Czochralski Monocrystalline Silicon[J]. Journal of Synthetic Crystals, 2020, 49(4): 600.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!