光学学报, 2017, 37 (12): 1202001, 网络出版: 2018-09-06  

一种光学通道开放且适合构建晶格的静电阱 下载: 567次

Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access
作者单位
盐城师范学院新能源与电子工程学院, 江苏 盐城 224007
引用该论文

李胜强, 张梦芝, 杨亮亮. 一种光学通道开放且适合构建晶格的静电阱[J]. 光学学报, 2017, 37(12): 1202001.

Shengqiang Li, Mengzhi Zhang, Liangliang Yang. Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access[J]. Acta Optica Sinica, 2017, 37(12): 1202001.

参考文献

[1] Schulz S A. Bethlem H L, van Veldhoven J, et al. Microstructured switchable mirror for polar molecules[J]. Physical Review Letters, 2004, 93(2): 020406.

    Schulz S A. Bethlem H L, van Veldhoven J, et al. Microstructured switchable mirror for polar molecules[J]. Physical Review Letters, 2004, 93(2): 020406.

[2] Xia Y, Yin Y L, Chen H B, et al. Electrostatic surface guiding for cold polar molecules: Experimental demonstration[J]. Physical Review Letters, 2008, 100(4): 043003.

    Xia Y, Yin Y L, Chen H B, et al. Electrostatic surface guiding for cold polar molecules: Experimental demonstration[J]. Physical Review Letters, 2008, 100(4): 043003.

[3] Loesch H J, Scheel B. Molecules on Kepler orbits: An experimental study[J]. Physical Review Letters, 2000, 85(13): 2709-2712.

    Loesch H J, Scheel B. Molecules on Kepler orbits: An experimental study[J]. Physical Review Letters, 2000, 85(13): 2709-2712.

[4] Junglen T, Rieger T, Rangwala S A, et al. Two-dimensional trapping of dipolar molecules in time-varying electric fields[J]. Physical Review Letters, 2004, 92(22): 223001.

    Junglen T, Rieger T, Rangwala S A, et al. Two-dimensional trapping of dipolar molecules in time-varying electric fields[J]. Physical Review Letters, 2004, 92(22): 223001.

[5] Liu Y, Yun M, Xia Y, et al. Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering[J]. Physical Chemistry Chemical Physics, 2010, 12(3): 745-752.

    Liu Y, Yun M, Xia Y, et al. Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering[J]. Physical Chemistry Chemical Physics, 2010, 12(3): 745-752.

[6] Sommer C, Motsch M, Chervenkov S, et al. Velocity-selected molecular pulses produced by an electric guide[J]. Physical Review A, 2010, 82(1): 013410.

    Sommer C, Motsch M, Chervenkov S, et al. Velocity-selected molecular pulses produced by an electric guide[J]. Physical Review A, 2010, 82(1): 013410.

[7] Deng L Z, Yin J P. Beam splitter for guided polar molecules with a Y-shaped charged wire[J]. Optics Letters, 2007, 32(12): 1695-1697.

    Deng L Z, Yin J P. Beam splitter for guided polar molecules with a Y-shaped charged wire[J]. Optics Letters, 2007, 32(12): 1695-1697.

[8] Deng L Z, Liang Y, Gu Z X, et al. Experimental demonstration of a controllable electrostatic molecular beam splitter[J]. Physical Review Letters, 2011, 106(14): 140401.

    Deng L Z, Liang Y, Gu Z X, et al. Experimental demonstration of a controllable electrostatic molecular beam splitter[J]. Physical Review Letters, 2011, 106(14): 140401.

[9] Bethlem H L, Berden G, Meijer G. Decelerating neutral dipolar molecules[J]. Physical Review Letters, 1999, 83(8): 1558-1561.

    Bethlem H L, Berden G, Meijer G. Decelerating neutral dipolar molecules[J]. Physical Review Letters, 1999, 83(8): 1558-1561.

[10] Bethlem H L, Berden G. Crompvoets F M H, et al. Electrostatic trapping of ammonia molecules[J]. Nature, 2000, 406(6795): 491-494.

    Bethlem H L, Berden G. Crompvoets F M H, et al. Electrostatic trapping of ammonia molecules[J]. Nature, 2000, 406(6795): 491-494.

[11] Hudson E R, Ticknor C, Sawyer B C, et al. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals[J]. Physical Review A, 2006, 73(6): 063404.

    Hudson E R, Ticknor C, Sawyer B C, et al. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals[J]. Physical Review A, 2006, 73(6): 063404.

[12] Hou S Y, Li S Q, Deng L Z, et al. Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 as an example[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2013, 46(4): 045301.

    Hou S Y, Li S Q, Deng L Z, et al. Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 as an example[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2013, 46(4): 045301.

[13] Katz D P. A storage ring for polar molecules[J]. Journal of Chemical Physics, 1997, 107(20): 8491-8501.

    Katz D P. A storage ring for polar molecules[J]. Journal of Chemical Physics, 1997, 107(20): 8491-8501.

[14] Zieger P C, Heiner C E, et al. . Multiple packets of neutral molecules revolving for over a mile[J]. Physical Review Letters, 2010, 105(17): 173001.

    Zieger P C, Heiner C E, et al. . Multiple packets of neutral molecules revolving for over a mile[J]. Physical Review Letters, 2010, 105(17): 173001.

[15] Deng L Z, Xia Y, Yin J P. Electrostatic surface storage ring for cold polar molecules[J]. Journal of the Optical Society of America B, 2010, 27(6): A88-A92.

    Deng L Z, Xia Y, Yin J P. Electrostatic surface storage ring for cold polar molecules[J]. Journal of the Optical Society of America B, 2010, 27(6): A88-A92.

[16] Li S Q, Xu L, Deng L Z, et al. Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip[J]. Journal of the Optical Society of America B, 2014, 31(1): 110-119.

    Li S Q, Xu L, Deng L Z, et al. Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip[J]. Journal of the Optical Society of America B, 2014, 31(1): 110-119.

[17] Meerakker S Y T, Smeets P H M, Vanhaecke N, et al. .Deceleration and electrostatic trapping of OH radical[J]. Physical Review Letters, 2005, 94(2): 023004.

    Meerakker S Y T, Smeets P H M, Vanhaecke N, et al. .Deceleration and electrostatic trapping of OH radical[J]. Physical Review Letters, 2005, 94(2): 023004.

[18] Gilijamse J J, Hoekstra S, Meek S A, et al. The radiative lifetime of metastable CO(a 3Π, v=0) [J]. Journal of Chemical Physics, 2007, 127(22): 221102.

    Gilijamse J J, Hoekstra S, Meek S A, et al. The radiative lifetime of metastable CO(a 3Π, v=0) [J]. Journal of Chemical Physics, 2007, 127(22): 221102.

[19] Rieger T, Junglen T, Rangwala S A, et al. Continuous loading of an electrostatic trap for polar molecules[J]. Physical Review Letters, 2005, 95(17): 173002.

    Rieger T, Junglen T, Rangwala S A, et al. Continuous loading of an electrostatic trap for polar molecules[J]. Physical Review Letters, 2005, 95(17): 173002.

[20] Kleinert J, Haimberger C, Zabawa P J, et al. Trapping of ultracold polar molecules with a thin-wire electrostatic trap[J]. Physical Review Letters, 2007, 99(14): 143002.

    Kleinert J, Haimberger C, Zabawa P J, et al. Trapping of ultracold polar molecules with a thin-wire electrostatic trap[J]. Physical Review Letters, 2007, 99(14): 143002.

[21] Li S Q, Xu L, Xia Y, et al. Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap[J]. Chinese Physics B, 2014, 23(12): 123701.

    Li S Q, Xu L, Xia Y, et al. Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap[J]. Chinese Physics B, 2014, 23(12): 123701.

[22] Wang Z X, Gu Z X, Xia Y, et al. Optically accessible electrostatic trap for cold polar molecules[J]. Journal of the Optical Society of America B, 2013, 30(9): 2348-2354.

    Wang Z X, Gu Z X, Xia Y, et al. Optically accessible electrostatic trap for cold polar molecules[J]. Journal of the Optical Society of America B, 2013, 30(9): 2348-2354.

[23] Schnell M, Lutzow P. Veldhoven J van, et al. A linear ac trap for polar molecules in their ground state[J]. Journal of Physical Chemistry A, 2007, 111(31): 7411-7419.

    Schnell M, Lutzow P. Veldhoven J van, et al. A linear ac trap for polar molecules in their ground state[J]. Journal of Physical Chemistry A, 2007, 111(31): 7411-7419.

[24] Wang Z X, Gu Z X, Deng L Z, et al. Cooling and trapping polar molecules in an electrostatic trap[J]. Chinese Physics B, 2015, 24(5): 053701.

    Wang Z X, Gu Z X, Deng L Z, et al. Cooling and trapping polar molecules in an electrostatic trap[J]. Chinese Physics B, 2015, 24(5): 053701.

[25] Sun H, Wang Z X, Wang Q, et al. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap[J]. Chinese Physics B, 2015, 24(11): 113101.

    Sun H, Wang Z X, Wang Q, et al. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap[J]. Chinese Physics B, 2015, 24(11): 113101.

[26] Raithel G, Birkl G, Kastberg A, et al. Cooling and localization dynamics in optical lattices[J]. Physical Review Letters, 1997, 78(4): 630-633.

    Raithel G, Birkl G, Kastberg A, et al. Cooling and localization dynamics in optical lattices[J]. Physical Review Letters, 1997, 78(4): 630-633.

[27] Hemmerich A, Weidemüller M, Esslinger T, et al. Trapping atoms in a dark optical lattice[J]. Physical Review Letters, 1995, 75(1): 37-40.

    Hemmerich A, Weidemüller M, Esslinger T, et al. Trapping atoms in a dark optical lattice[J]. Physical Review Letters, 1995, 75(1): 37-40.

[28] Vuletic V, Chin C, Kerman A J, et al. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities[J]. Physical Review Letters, 1998, 81(26): 5768-5771.

    Vuletic V, Chin C, Kerman A J, et al. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities[J]. Physical Review Letters, 1998, 81(26): 5768-5771.

[29] Kastberg A, Phillips W D, Rolston S L, et al. Adiabatic cooling of cesium to 700nK in an optical lattice[J]. Physical Review Letters, 1995, 74(9): 1542-1545.

    Kastberg A, Phillips W D, Rolston S L, et al. Adiabatic cooling of cesium to 700nK in an optical lattice[J]. Physical Review Letters, 1995, 74(9): 1542-1545.

[30] Fischer M C, Madison K W, Niu Q, et al. Observation of Rabi oscillations between Bloch bands in an optical potential[J]. Physical Review A, 1998, 58(4): 2648-2651.

    Fischer M C, Madison K W, Niu Q, et al. Observation of Rabi oscillations between Bloch bands in an optical potential[J]. Physical Review A, 1998, 58(4): 2648-2651.

[31] Dahan M B, Peik E, Reichel J, et al. Bloch oscillations of atoms in an optical potential[J]. Physical Review Letters, 1996, 76(24): 4508-4511.

    Dahan M B, Peik E, Reichel J, et al. Bloch oscillations of atoms in an optical potential[J]. Physical Review Letters, 1996, 76(24): 4508-4511.

[32] Jurczak C, Destruelle B, Sengstock K, et al. Atomic transport in an optical lattice: An investigation through polarization-selective intensity correlations[J]. Physical Review Letters, 1996, 77(9): 1727-1730.

    Jurczak C, Destruelle B, Sengstock K, et al. Atomic transport in an optical lattice: An investigation through polarization-selective intensity correlations[J]. Physical Review Letters, 1996, 77(9): 1727-1730.

[33] Dutta S K, Teo B K, Raithel G. Tunneling dynamics and gauge potentials in optical lattices[J]. Physical Review Letters, 1999, 83(10): 1934-1937.

    Dutta S K, Teo B K, Raithel G. Tunneling dynamics and gauge potentials in optical lattices[J]. Physical Review Letters, 1999, 83(10): 1934-1937.

[34] Weidemüller M, Hemmerich A, Gorlitz A, et al. Bragg diffraction in an atomic lattice bound by light[J]. Physical Review Letters, 1995, 75(25): 4583-4586.

    Weidemüller M, Hemmerich A, Gorlitz A, et al. Bragg diffraction in an atomic lattice bound by light[J]. Physical Review Letters, 1995, 75(25): 4583-4586.

[35] Pachos J K, Knight P L. Quantum computation with a one-dimensional optical lattice[J]. Physical Review Letters, 2003, 91(10): 107902.

    Pachos J K, Knight P L. Quantum computation with a one-dimensional optical lattice[J]. Physical Review Letters, 2003, 91(10): 107902.

[36] Yin J P, Gao W J, Liu N C, et al. Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors[J]. Journal of the Chinese Chemical Society, 2001, 48(3): 555-567.

    Yin J P, Gao W J, Liu N C, et al. Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors[J]. Journal of the Chinese Chemical Society, 2001, 48(3): 555-567.

[37] Yin J P, Gao W J, Hu J J, et al. Magnetic surface microtraps for realizing an array of alkali atomic Bose-Einstein condensates or Bose clusters[J]. Optics Communications, 2007, 206: 99-113.

    Yin J P, Gao W J, Hu J J, et al. Magnetic surface microtraps for realizing an array of alkali atomic Bose-Einstein condensates or Bose clusters[J]. Optics Communications, 2007, 206: 99-113.

[38] Yin J P, Gao W J, Hu J J, et al. Atomic magnetic lattices and their applications[J]. Chinese Physics Letters, 2002, 19(3): 327-330.

    Yin J P, Gao W J, Hu J J, et al. Atomic magnetic lattices and their applications[J]. Chinese Physics Letters, 2002, 19(3): 327-330.

[39] Yin J P, Gao W J, Hu J J. Arrays of microscopic magnetic traps for cold atoms and their application in atom optics[J]. Chinese Physics, 2002, 11(5): 472-480.

    Yin J P, Gao W J, Hu J J. Arrays of microscopic magnetic traps for cold atoms and their application in atom optics[J]. Chinese Physics, 2002, 11(5): 472-480.

李胜强, 张梦芝, 杨亮亮. 一种光学通道开放且适合构建晶格的静电阱[J]. 光学学报, 2017, 37(12): 1202001. Shengqiang Li, Mengzhi Zhang, Liangliang Yang. Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access[J]. Acta Optica Sinica, 2017, 37(12): 1202001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!