中国激光, 2021, 48 (4): 0401009, 网络出版: 2021-02-04   

光纤气体激光光源研究进展及展望(Ⅱ): 基于粒子数反转 下载: 1668次

Research Progress and Prospect of Fiber Gas Laser Sources (II): Based on Population Inversion
作者单位
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
引用该论文

王泽锋, 周智越, 崔宇龙, 黄威, 李智贤, 李昊. 光纤气体激光光源研究进展及展望(Ⅱ): 基于粒子数反转[J]. 中国激光, 2021, 48(4): 0401009.

Zefeng Wang, Zhiyue Zhou, Yulong Cui, Wei Huang, Zhixian Li, Hao Li. Research Progress and Prospect of Fiber Gas Laser Sources (II): Based on Population Inversion[J]. Chinese Journal of Lasers, 2021, 48(4): 0401009.

参考文献

[1] Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review[J]. Optical Materials Express, 2012, 2(7): 948-961.

[2] Jones A M, Nampoothiri A V, Ratanavis A, et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion[J]. Optics Express, 2011, 19(3): 2309-2316.

[3] Jones A M, Fourcade-Dutin C, Mao C, et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers[J]. Proceedings of SPIE, 2012, 8237: 82373Y.

[4] Wang Z, Belardi W, Yu F, et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J]. Optics Express, 2014, 22(18): 21872-21878.

[5] Nampoothiri A V V, Debord B, Alharbi M, et al. CW hollow-core optically pumped I2 fiber gas laser[J]. Optics Letters, 2015, 40(4): 605-608.

[6] Hassan M R A, Yu F, Wadsworth W J, et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 2016, 3(3): 218-221.

[7] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 2017, 42(20): 4055-4058.

[8] Dadashzadeh N, Thirugnanasambandam M P. Kushan Weerasinghe H W, et al. Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR[J]. Optics Express, 2017, 25(12): 13351-13358.

[9] Lane R A, Madden T J. Numerical investigation of pulsed gas amplifiers operating in hollow-core optical fibers[J]. Optics Express, 2018, 26(12): 15693-15704.

[10] Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers[J]. Optics Express, 2018, 26(15): 19144-19153.

[11] 崔宇龙, 周智越, 黄威, 等. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002.

    Cui Y L, Zhou Z Y, Huang W, et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002.

[12] Aghbolagh F B A, Nampoothiri V, Debord B, et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 2019, 44(2): 383-386.

[13] Cui Y L, Huang W, Wang Z F, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 2019, 6(8): 951-954.

[14] 周智越, 李昊, 崔宇龙, 等. 基于空芯光纤的光泵浦4 μm连续波HBr气体激光器[J]. 光学学报, 2020, 40(16): 1614001.

    Zhou Z Y, Li H, Cui Y L, et al. Optically pumped 4 μm CW HBr gas laser based on hollow-core fiber[J]. Acta Optica Sinica, 2020, 40(16): 1614001.

[15] Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11(10): 105807.

[16] Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 2016, 41(21): 5118-5121.

[17] Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 28 μm[J]. Optics Letters, 2018, 43(19): 4671-4674.

[18] 王泽锋, 于飞, Wadsworth William, 等. 单程高增益1.9 μm光纤气体拉曼激光器[J]. 光学学报, 2014, 34(8): 0814004.

    Wang Z F, Yu F, Wadsworth W, et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.

[19] 陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源[J]. 光学学报, 2016, 36(5): 0506002.

    Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36(5): 0506002.

[20] 顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联SRS的红绿蓝色激光[J]. 光学学报, 2016, 36(8): 0806005.

    Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 2016, 36(8): 0806005.

[21] 陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器[J]. 光学学报, 2017, 37(5): 0514002.

    Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 2017, 37(5): 0514002.

[22] 黄威, 崔宇龙, 李智贤, 等. 基于空芯光纤中氢气受激拉曼散射的1.7 μm光纤激光光源研究[J]. 光学学报, 2020, 40(5): 0514001.

    Huang W, Cui Y L, Li Z X, et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001.

[23] 崔宇龙, 黄威, 周智越, 等. 基于空芯光子晶体光纤的单程高效氘气转动拉曼激光光源[J]. 光学学报, 2020, 40(2): 0214001.

    Cui Y L, Huang W, Zhou Z Y, et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 2020, 40(2): 0214001.

[24] Bandyopadhyay N, Bai Y, Gokden B, et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 μm[J]. Applied Physics Letters, 2010, 97(13): 131117.

[25] 刘晶儒, 唐影, 黄珂, 等. 电激励重复频率非链式HF激光器[J]. 光学精密工程, 2011, 19(2): 360-366.

    Liu J R, Tang Y, Huang K, et al. Electrically initiated repetitive-pulsed non-chain HF lasers[J]. Optics and Precision Engineering, 2011, 19(2): 360-366.

[26] 于清旭, 李红, 林钧岫. 基于泛频CO激光器的微量气体光声光谱仪[J]. 光电子·激光, 2003, 14(7): 669-671.

    Yu Q X, Li H, Lin J X. A CO-overtone laser based photoacoustic spectrometer for trace gas detection[J]. Journal of Optoelectronicslaser, 2003, 14(7): 669-671.

[27] Adamovich I V, Goshe M, Lempert W R, et al. Continuous-wave electrically excited carbon monoxide laser operating on first overtone infrared bands: 2.5- to 4.0-microns kinetic modeling and design[J]. Proceedings of SPIE, 2004, 5448: 322-343.

[28] Faucher D, Bernier M, Androz G, et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(7): 1104-1106.

[29] Dinerman B J, Moulton P F. 3-μm CW laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145.

[30] Lippert E, Fonnum H, Arisholm G, et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator[J]. Optics Express, 2010, 18(25): 26475-26483.

[31] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[32] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751.

[33] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5(7): 761-764.

[34] HITRAN spectroscopic database[EB/OL]. [ 2020- 03- 15]. . http://hitran.iao.ru/molecule

[35] Banwell CN. Fundamentals of molecular spectroscopy[M]. London: McGraw-Hill Book Company, 1972.

[36] 周炳琨, 高以智, 陈倜嵘, 等. 激光原理[M]. 6版. 北京: 国防工业出版社, 2009: 201- 204.

    Zhou BK, Gao YZ, Chen TD, et al.Laser principle[M]. 6 ed. Beijing: National Defense Industry Press, 2009: 201- 204.

[37] Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser[J]. IEEE Journal of Quantum Electronics, 1994, 30(10): 2395-2400.

[38] Kletecka C S, Campbell N, Jones C R, et al. Cascade lasing of molecular HBr in the four micron region pumped by a Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1471-1477.

[39] Botha L R, Bollig C. Esser M J D, et al. Ho∶YLF pumped HBr laser[J]. Optics Express, 2009, 17(22): 20615-20622.

[40] Koen W, Jacobs C, Bollig C, et al. Optically pumped tunable HBr laser in the mid-infrared region[J]. Optics Letters, 2014, 39(12): 3563-3566.

[41] Bateman SA, BelardiW, YuF, et al. Gain from helium-xenon discharges in hollow optical fibres at 3 to 3.5 μm[C]// CLEO: Science and Innovations 2014, San Jose, California: Optical Society of America, 2014: STh5c.

[42] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488-491.

[43] Tuominen J, Ritari T, Ludvigsen H, et al. Gas filled photonic bandgap fibers as wavelength references[J]. Optics Communications, 2005, 255(4/5/6): 272-277.

[44] Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber[J]. Optics Express, 2008, 16(6): 3976-3985.

[45] Gao S F, Wang Y Y, Tian C P, et al. Splice loss optimization of a photonic bandgap fiber via a high V-number fiber[J]. IEEE Photonics Technology Letters, 2014, 26(21): 2134-2137.

[46] 郝军, 刘晔, 李文彩, 等. He气辅助熔接的全光纤型HC-PCF低压气体腔的制备[J]. 光学学报, 2015, 35(9): 0906001.

    Hao J, Liu Y, Li W C, et al. Preparation of all-fiber HC-PCF low-pressure gas cell by the He-assisted fusion splicing technique[J]. Acta Optica Sinica, 2015, 35(9): 0906001.

[47] Xie S, Pennetta R. Russell P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J]. Optica, 2016, 3(3): 277-282.

[48] Huang W, Huang W, Huang W, et al. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique[J]. Optics Express, 2019, 27(26): 37111-37121.

[49] Li H, Huang W, Wang Z F, et al. Double-end low-loss coupling of anti-resonant hollow-core fibers with solid-core single-mode fibers by tapering technique[J]. Laser Physics Letters, 2020, 17(10): 105101.

[50] Huang W, Cui Y L, Zhou Z Y, et al. Towards all-fiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers[J]. Chinese Optics Letters, 2019, 17(9): 091402.

[51] Cui Y L, Zhou Z Y, Huang W, et al. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers[J]. Optics & Laser Technology, 2020, 121: 105794.

王泽锋, 周智越, 崔宇龙, 黄威, 李智贤, 李昊. 光纤气体激光光源研究进展及展望(Ⅱ): 基于粒子数反转[J]. 中国激光, 2021, 48(4): 0401009. Zefeng Wang, Zhiyue Zhou, Yulong Cui, Wei Huang, Zhixian Li, Hao Li. Research Progress and Prospect of Fiber Gas Laser Sources (II): Based on Population Inversion[J]. Chinese Journal of Lasers, 2021, 48(4): 0401009.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!