作者单位
摘要
长春理工大学理学院高功率半导体激光器国家重点实验室,吉林 长春 130022
为了能够得到高质量的薄膜,降低实验成本,通过化学气相沉积(CVD)方法以GaTe粉作为Ga源在云母衬底上合成了β-Ga2O3薄膜。通过改变生长温度、载气和生长时间得到高结晶质量的β-Ga2O3薄膜,并通过X射线衍射(XRD)和拉曼光谱进行证实。XRD结果显示,薄膜的最佳生长温度为750 ℃。对比不同载气下合成的β-Ga2O3薄膜可知,Ar气是生长薄膜材料的最佳环境。为了实现高结晶质量的β-Ga2O3薄膜,在Ar气环境下改变薄膜的生长时间,XRD结果发现,生长时间20 min的薄膜具有高结晶质量。最后,将其转移到300 nm厚氧化层的Si/SiO2衬底上,并通过原子力显微镜测试,证实了16 nm厚的二维Ga2O3薄膜。
薄膜 化学气相沉积 云母衬底 高结晶质量 二维β-Ga2O3薄膜 
激光与光电子学进展
2022, 59(19): 1931003
作者单位
摘要
1 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
2 长春理工大学 理学院, 吉林 长春 130022
采用分子束外延技术(MBE)在Si(111)衬底上生长了非掺杂和Si掺杂砷化镓(GaAs)纳米线(NWs)。通过扫描电子显微镜(SEM)证实了生长样品的一维性; 通过X射线衍射(XRD)测试和拉曼光谱(Raman)证实了掺杂GaAs纳米线中Si的存在; 通过光致发光(PL)研究了非掺杂和Si掺杂GaAs纳米线的发光来源, 掺杂改变了GaAs纳米线的辐射复合机制。掺杂导致非掺杂纳米线中自由激子发光峰和纤锌矿/闪锌矿(WZ/ZB)混相结构引起的缺陷发光峰消失。
光谱学 GaAs纳米线 Si掺杂 光致发光 分子束外延 spectroscopy GaAs nanowires Si doping photoluminescence MBE 
发光学报
2021, 42(5): 629
作者单位
摘要
长春理工大学 高功率半导体激光国家重点实验室,长春 130022
利用分子束外延技术在GaSb(100)衬底上先生长作为缓冲层以降低薄膜失配度的低Sb组分的三元合金InAsSb,再生长InAs薄膜.在整个生长过程中通过反射高能电子衍射仪进行实时原位监测.InAs薄膜生长过程中,电子衍射图案显示了清晰的再构线,其薄膜表面具有原子级平整度.利用原子力显微镜对InAs薄膜进行表征,结果显示较低Sb组分的InAsSb缓冲层上外延InAs薄膜的粗糙度比较高Sb组分的InAsSb缓冲层上外延InAs薄膜的粗糙度降低了约2.5倍.通过对不同Sb组分的三元合金InAsSb缓冲层上外延的InAs薄膜进行X射线衍射测试及对应的模拟,结果表明在较低Sb组分的InAsSb缓冲层上外延InAs薄膜的衍射峰半高峰宽较小,说明低Sb组分的InAsSb作为缓冲层可以降低InAs薄膜的内应力,提高InAs薄膜的结晶质量.利用光致发光光谱对高结晶质量的InAs薄膜进行发光特性研究,10 K下InAs的发光峰位约为0.418 eV,为自由激子发光.
InAs薄膜 InAsSb缓冲层 晶格失配 晶体质量 发光特性 分子束外延技术 X射线衍射 InAs film InAsSb buffer layer Lattice mismatch Crystal quality Luminescence properties Molecular beam epitaxy X-ray diffraction 
光子学报
2019, 48(10): 1031002
作者单位
摘要
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
通过分子束外延(MBE)生长技术,在GaAs(100)基片上生长出单晶InxGa1-xAs薄膜,利用反射高能电子衍射仪(RHEED)实时监控薄膜生长情况。对InxGa1-xAs薄膜进行了X射线衍射(XRD)测试,结果显示该薄膜为高质量薄膜,且In组分(原子数分数)为0.51。光致发光(PL)光谱测试结果表明,室温下发光峰位约为1.55 μm;由于InxGa1-xAs薄膜中存在压应变,光谱峰位出现蓝移。Raman光谱显示GaAs-like横向光学声子(TO)模式的峰出现了明显展宽,验证了InxGa1-xAs薄膜中存在应变。
薄膜 应变 拉曼光谱 光致发光 分子束外延 实时监测 
中国激光
2019, 46(2): 0203002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!