作者单位
摘要
1 清华大学环境学院环境污染溯源与精细监管技术研究中心, 北京 100084 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
2 北京 100084 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
近年来, 三维荧光技术已经成为常用的化学分析技术, 但有些结构相近的荧光有机物的三维荧光光谱十分相似, 可能导致分析结果错误。 因此, 如何精准区分具有相似三维荧光光谱的有机物是十分重要且亟待解决的问题。 荧光量子产率和荧光寿命是荧光有机物两个重要的光学参数, 对于分子结构的差异更灵敏。 对吲哚、 3-甲基吲哚和L-色氨酸的三维荧光光谱、 荧光量子产率和荧光寿命进行了研究。 结果表明, 它们的三维荧光光谱都出现两个荧光峰, 且荧光峰位置十分接近。 吲哚和L-色氨酸的荧光峰大致位于[激发波长, 发射波长]=[275, 340~350]和[220, 340~350] nm附近, 3-甲基吲哚的荧光峰位于[激发波长, 发射波长]=[280, 365]和[225, 365] nm附近。 在相同浓度下, 三种有机物在激发波长为275~280 nm处的最高荧光强度依次为: 吲哚>3-甲基吲哚>L-色氨酸。 利用绝对量子产率测量技术测得吲哚、 3-甲基吲哚和L-色氨酸的荧光量子产率分别约为0.264、 0.347和0.145; 利用时间相关单光子计数技术测得吲哚、 3-甲基吲哚和L-色氨酸的荧光寿命分别约为4.149、 7.896和2.715 ns。 研究表明, 荧光寿命和荧光量子产率能区分三维荧光光谱相似的荧光有机物, 研究结果在荧光有机物的准确识别上具有重要的价值。
三维荧光光谱 荧光有机物 荧光量子产率 荧光寿命 Excitation-emission matrix Fluorescent organic matter Fluorescence quantum yield Fluorescence lifetime 
光谱学与光谱分析
2023, 43(12): 3758
张毅 1,2刘传旸 2,3程澄 2,3沈鉴 2,3[ ... ]吴静 2,3
作者单位
摘要
1 苏州科技大学环境科学与工程学院, 江苏 苏州 215009
2 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
3 清华大学环境学院环境污染溯源与精细监管技术研究中心, 北京 100084
水质荧光指纹技术是近年来新兴的水体污染检测技术, 它可以展现水体有机物组成信息, 弥补传统常规水质参数的不足。 长江入海口段沿江地带是我国的产业密集带, 区域内城市化程度高, 工业发达, 在此区域内, 水环境质量变化会直接影响经济发展和民众身体健康, 因此, 研究长江入海口段的水质变化具有重要的意义。 长江入海口段的pH、 电导率、 NH3-N、 CODMn、 TP、 TN和TOC等指标变化趋势不尽相同, 但是从电导率、 TN、 CODMn、 TOC这四个指标, 反映出沿着长江入海口段从上游至下游的过程中具有一定的污染积累, 尤其在下游的CJ-11和CJ-12采样点, 可能受到了较大的污染源影响。 从常规指标和TOC的结果并不能直接体现污染信息, 只能反映污染总量从上游至下游的增加。 长江入海口段水质荧光指纹主要包含三个荧光峰, 记作峰A、 峰B、 峰C, 它们的[激发波长, 发射波长]分别为[275, 335] nm, [230, 345] nm 和[250, 450] nm, 其中峰A和峰B荧光强度的变化趋势同步, 相关性较高, 相关系数为0.994 8, 表明两峰很可能来自相同污染源。 通过水质荧光指纹比对, 在长江入海口段CJ-11和CJ-12两点的水质荧光指纹与支流HPJ-1的水质荧光指纹相似度分别达到86%和88%, 而与CJ-10的相似度<60%。 由此可见, 长江入海口段下游水质荧光指纹(CJ-11和CJ-12)发生变化, 可能是由支流HPJ汇入长江入海口段造成的。 支流HPJ的水质荧光指纹信号与印染行业水质荧光指纹数据库相似度约90%, 表明支流HPJ的水质荧光指纹信号可能与当地的印染废水排放有关。 基于长江入海口段峰A和峰B的强度与NH3-N浓度呈现良好的线性正相关性(相关系数为0.885 5), 水质荧光指纹具有作为指示长江入海口段NH3-N浓度的潜力。 水质荧光指纹技术可以展现水体有机物质组成和来源, 在污染示踪以及水质状况评价方面具有重要的应用价值。
水质荧光指纹 长江入海口段 有机物 污染源 Aqueous fluorescence fingerprint Yangtze River Estuary Organic matter Pollution source 
光谱学与光谱分析
2022, 42(12): 3948
作者单位
摘要
1 清华大学环境学院环境污染溯源与精细监管技术研究中心, 北京 100084
3 常州市环境科学研究院, 江苏 常州 213022
基于三维荧光光谱随荧光有机物的种类和浓度的不同与水体或污染排放源呈现对应关系的特性, 水质荧光指纹溯源技术能够通过水体的三维荧光信号追溯污染排放源。 以我国南方C市地表水A河为主要研究对象, 利用水质荧光指纹溯源技术对A河及其上游来水方向J河进行了水质荧光指纹特征解析和污染排放源溯源。 A河水质荧光指纹主要包括三个特征荧光峰, 其[激发波长, 发射波长]分别为[280, 320], [235, 345]和[255, 460] nm, 其上、 中、 下游水质指纹之间相似度均大于99%, 具有典型的印染废水污染特征。 A河上游由J河分流汇入, J河水质荧光指纹与A河相似度低于60%, 且强度不超过A河的40%。 J河对A河水质荧光指纹形成过程的影响较小, A河的荧光强度主要由A河上游区域贡献。 溯源结果表明, A河河水与A河上游印染纺织工业园区的印染废水水质荧光指纹相似度为94%, A河污染很可能来自其上游未经处理的印染废水的排放。 A河和J河河水水质荧光指纹各荧光峰强度与高锰酸盐指数的线性相关系数R2分别达到0.956 4, 0.937 5和0.985 4, 而水质荧光指纹法感知污染的灵敏度更高。 与其他三维荧光光谱相似度算法的结果对比表明, 水质荧光指纹溯源技术是一种可靠的水环境监管技术, 能够为进一步实现污染源头治理和环境精细化管理提供有力的技术支撑。
水质荧光指纹 地表水 污染溯源 三维荧光 Aqueous fluorescence fingerprint Surface water Discharge source identification Three-dimensional fluorescence 
光谱学与光谱分析
2021, 41(7): 2142

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!