作者单位
摘要
1 上海建桥学院珠宝学院, 上海 201306
2 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
3 中国地质大学(武汉)地球科学学院, 湖北 武汉 430074
近期市场出现一种形似铁线绿松石的玉石品种, 商家称之为“中东绿松石”, 困扰了珠宝市场的正常秩序。 对“中东绿松石”进行显微岩相学、 X射线粉晶衍射、 红外光谱、 拉曼光谱、 显微紫外可见光谱和微量元素分析, 确定其矿物学特征和谱学特征并命名。 结果表明: “中东绿松石”是一种多晶质集合体, 以透明-微透明蓝色和白色球状矿物组成的条带为主, 外部具有不透明褐红色矿物, 玻璃光泽, 折射率为1.53~1.54, 相对密度约为2.48~2.60, 紫外荧光灯短波和长波下, 蓝色部分均呈蓝白色荧光。 显微岩相学分析表明, 蓝色和白色的环带区域多为隐晶质放射状玉髓, 部分玉髓表面分布有少量铁氧化物而呈褐红色; 环带的中心区域为0.05~0.3 mm它形粒状的单晶石英。 X射线粉晶衍射分析发现“中东绿松石”中还含有结晶程度不高的针铁矿。 红外光谱显示, “中东绿松石”的红外光谱特征吸收峰与石英质玉石和玉髓一致, 为1 179、 1 104、 798、 781、 690、 540和488 cm-1, 由Si-O非对称伸缩振动、 Si-O-Si对称伸缩振动和Si-O弯曲振动导致。 拉曼光谱分析表明, 样品蓝色环带部分和中心部分具有石英的拉曼位移466和210 cm-1, 样品褐红色部分不仅具有石英的拉曼位移, 还具有针铁矿的拉曼位移302和551 cm-1。 显微紫外可见光谱和微量元素分析表明, “中东绿松石”的蓝色与Cu元素含量呈正相关关系, 表现为600~700 nm吸收带。 尽管“中东绿松石”的外形特点和某些铁线绿松石相似, 但其矿物成分是显晶质石英和玉髓的集合体, 含少量针铁矿, 根据GB/T 16552-2017, 其正确的珠宝玉石名称应为“石英质玉”。
“中东绿松石” 矿物成分 X射线粉晶衍射 石英质玉 颜色成因 “Middle East turquoise” Mineral composition X-ray powder diffraction Quartzite jade Color origin 
光谱学与光谱分析
2023, 43(9): 2862
作者单位
摘要
1 上海建桥学院珠宝学院, 上海 201306
2 上海建桥学院珠宝学院, 上海 201306 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
3 中国地质大学(武汉)地球科学学院, 湖北 武汉 430074
4 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
我国四川绵阳平武县虎牙乡雪宝顶矿区产出一种晶形完整、 颗粒大, 颜色稀少的橘黄色调白钨矿, 受到宝石及矿物晶体收藏者们的青睐。 以5颗雪宝顶白钨矿样品为研究对象, 采用常规宝石学仪器、 傅里叶变换红外光谱仪、 紫外-可见分光光度计、 激光显微共聚焦拉曼光谱仪、 荧光光谱仪等进行测试, 旨在厘清该产地白钨矿的主要宝石学特性。 测试结果表明, 白钨矿的指纹区红外吸收处于440 cm-1处和800~900 cm-1范围内(806、 817、 856、 867 cm-1)——分别归属于[WO4]2-四面体基团的面外弯曲振动和反对称伸缩振动, 此外在2 000~3 000 cm-1的官能团区可见和水相关的明显吸收峰。 拉曼光谱测试表明, 位于911 cm-1的主峰归属于[WO4]2-的ν1对称伸缩振动; 位于797 cm-1处的峰归属于[WO4]2-的ν3非对称伸缩振动; 位于332 cm-1的峰和400 cm-1附近的弱峰归属于[WO4]2-的ν2面外弯曲振动; 位于211 cm-1附近的弱峰是由(Ca—O)的平移模式导致。 紫外-可见分光光度计测试结果表明, 该产地白钨矿深橘黄色调与584、 588、 682、 743、 750、 803和874 nm处的吸收有关, 可能与稀土元素Pr和Nd的混合物“didymium”的存在有关。 三维荧光光谱表明无色与深橘黄色调白钨矿样品的荧光主峰数量相同, 峰位相近, 均位于λex235 nm/λem455 nm, λex250 nm/λem490 nm和λex265 nm/λem523 nm附近。 浅橘黄色调样品除了上述荧光主峰以外还出现λex250 nm/λem425 nm附近荧光峰。
白钨矿 红外吸收光谱 紫外-可见吸收光谱 拉曼光谱 荧光光谱 Scheelite Infrared Spectrum Raman spectrum Ultraviolet-visible spectrum Fluorescence spectrum 
光谱学与光谱分析
2023, 43(8): 2550
作者单位
摘要
1 德宏师范高等专科学校, 云南 德宏 678400
2 上海建桥学院珠宝学院, 上海 201306
3 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
“缅绿料”是近年来滇西市场上出现的新兴缅甸石英质玉石品种, 特点是质地细腻, 绿色带深浅不同的蓝、 黄色调, 部分绿色品种与高品质澳洲绿玉髓较为相似, 但其颜色成因尚不清楚, 鉴定评价及市场推广亦亟需相关理论支持。 运用红外光谱仪、 拉曼光谱仪、 紫外-可见光谱仪、 X射线荧光光谱仪、 X射线粉末衍射仪、 岩矿薄片鉴定等方法对“缅绿料”的矿物组成及结构、 化学成分、 谱学特征及颜色成因等进行探究。 结果表明主要矿物为α-石英(含微量斜硅石), 以隐晶质为主, 少量微晶质, 含量占90%以上, 其次为显微细粒状、 鳞片状绢云母及镍滑石, 以及微量镍绿泥石、 铬钙钛矿, 局部偶见次生浸染状铁泥质, 整体呈含鳞片显微粒状结构。 红外透射光谱主要显示α-石英的红外吸收特征, 1 019、 800~600和462 cm-1处吸收峰分别归属于νas(Si—O—Si)反对称伸缩振动、 νs(Si—O—Si)对称伸缩振动及δ(Si—O)弯曲振动。 3 463及1 639、 1 399 cm-1处吸收峰由赋存于石英微空隙间的自由水分子的νas(H—O—H)反对称伸缩振动及δ(H—O—H)弯曲振动引起。 拉曼光谱除显示α-石英特征拉曼组峰204、 262、 355、 395、 463 cm-1外, 501 cm-1处的弱拉曼峰指示含微量斜硅石, 675 cm-1处拉曼峰指示含镍滑石。 综合化学成分及紫外-可见光谱特征表明, 该玉石含Mg、 Al、 Cl、 K、 Ca、 Ti、 Cr、 Fe、 Ni等杂质元素, Ni和Fe是主要致色元素。 Ni、 Fe含量的显著差异是其呈现绿-蓝绿、 绿黄-黄绿两种颜色系列的原因。 高含量Ni、 低含量Fe形成绿-蓝绿色系列, 蓝色调变化与Ni含量呈正相关性; 同等低含量的Ni和Fe形成绿黄-黄绿色系列, 黄色调变化与Fe、 Ni含量呈负相关性。 综上, “缅绿料”归属为绿玉髓, 其颜色特征由镍滑石、 绢云母及次生铁泥质等杂质矿物引起, Ni元素以游离态Ni离子和杂质矿物镍滑石两种形式存在, 其中镍滑石在其他来源的绿玉髓中较少见, 可作为产地溯源的重要参考特征。 该研究丰富了绿玉髓的种类及产地信息数据, 亦为进一步探究“缅绿料”成矿地质条件背景提供了基础数据。
“缅绿料” 石英质玉 矿物组成 谱学特征 颜色成因 “Mianlv Yu” Jade Quartzose Mineral constituent Spectral characteristics Color origin 
光谱学与光谱分析
2023, 43(8): 2543
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 上海建桥学院珠宝学院, 上海 201306
3 深圳技术大学创意设计学院, 广东 深圳 518118
湖北省十堰市竹山县秦古镇小林扒矿区产出了一类较为特殊的绿松石。 这类绿松石颜色多为浅绿色、 浅黄绿色或浅苹果绿色, 产出原石具滑感, 性脆, 亦称之为“油松”。 与其结构细腻度相当的绿松石原料相比, 此类绿松石密度普遍明显偏低, 硬度偏小; 经传统有机结合剂充填处理后, 致密度及硬度均未见明显改善, 无法作为首饰级材料使用, 造成绿松石这类不可再生的宝贵资源严重浪费。 以“油松”为研究对象, 采用常规宝石学测试仪器、 红外吸收光谱仪、 X射线粉晶衍射仪、 电子探针仪以及环境扫描电子显微镜等对其化学组分及显微结构特征等进行测试, 为有效利用这类绿松石资源提供科学依据。 测试结果表明, “油松”的相对密度为2.04~2.22; 在长波和短波紫外光下荧光反应均显示为惰性。 “油松”的红外吸收光谱谱带主要分布在3 700~3 090 cm-1以及1 638~466 cm-1范围内, 其中3 509和3 462 cm-1处峰形尖锐的OH致吸收光谱、 3 277和3 090 cm-1 附近较宽缓的结晶水致吸收光谱特征与绿松石的官能团区吸收特征一致。 “油松”在高频区3 700和3 622 cm-1处具有高岭石或蒙脱石中OH 致弱红外吸收谱峰。 在1 638 cm-1附近均出现有强度中等的较为宽缓的吸收峰, 该吸收峰与绿松石中H2O的弯曲振动致吸收谱峰一致。 指纹区的吸收峰峰形及峰位均与一般绿松石有较大差异, 为Si—O及P—O的混合吸收谱峰。 “油松”的主要化学组成元素为Si, Al和P, 含有少量的Fe和Cu, 并含有微量的Mg, Ca及Cr。 组成元素的氧化物含量分别为: w(SiO2): 25.60%~30.90%, w(Al2O3): 26.55%~28.29%, w(FeOT): 5.35%~5.90%, w(P2O5): 22.00%~23.52%, w(CuO): 5.10%~5.87%。 “油松”中的Al2O3和P2O5的含量均低于绿松石成分理论值及其他各产地的天然绿松石。 相对于天然绿松石中较低的SiO2含量(0.02%~0.12%), “油松”中SiO2的含量明显偏高, 均高于25%。 “油松”的主要组成矿物为绿松石, 并含有一定量的粘土矿物蒙脱石及蒙脱石-高岭石, 其硬度低, 具有滑感, 是“油松”硬度低, 具有滑感且优化处理效果不显著的主要原因。
绿松石 油性 红外吸收光谱 X粉晶衍射 蒙脱石 Turquoise Oily Infrared absorption spectrum X Ray diffraction Montmorillonite 
光谱学与光谱分析
2021, 41(4): 1246
作者单位
摘要
1 中国地质大学(武汉)地球科学学院,湖北 武汉 430074
2 上海建桥学院珠宝学院,上海 201315
为对比研究中国山东昌乐方山矿区与缅甸抹谷Le-shuza-kone矿区所产暗蓝色刚玉的光谱学特征, 并确定方山矿区和Le-shuza-kone矿区刚玉中铁元素的价态及致色机理, 采用X射线粉晶衍射(XRD)、 显微拉曼光谱(RAMAN)、 显微傅里叶红外光谱(FTIR)测试、 电子探针(EPMA)及穆斯堡尔谱(CEMS)等方法, 对产于方山矿区和Le-shuza-kone矿区暗蓝色刚玉的物相、 光谱学特征及成分开展深入研究。 X射线衍射结果表明, 两个矿区所产的刚玉在2θ=25°~45°之间以3.408 8 ?(012), 2.551 8 ?(104), 2.380 7 ?(110)和2.085 0 ?(113)四个衍射峰为特征。 缅甸抹谷Le-shuza-kone矿区刚玉在2θ=22°~23°之间有3.981 5 ?(110)的弱衍射峰, 在2θ=38°~40°之间有2.314 9 ?(111)的弱衍射峰, 分别为硬水铝石和勃姆矿(一水软铝石)的特征。 拉曼光谱散射峰主要分布于350~450和550~850 cm-1两个区间。 416和378 cm-1为刚玉的特征峰, 测试结果中415和377 cm-1的强峰属于内部结构变形导致的拉曼位移, 749 cm-1处的拉曼散射峰归属于Al-O伸缩振动。 方山矿区刚玉的793和811 cm-1拉曼峰和Le-shuza-kone矿区刚玉707, 793, 1 239和1 247 cm-1拉曼峰可作为区分产地的依据。 红外光谱表现为两个矿区样品共有指纹区451, 603, 640, 779和1 088 cm-1的吸收峰, 缅甸抹谷Le-shuza-kone矿区刚玉在官能团区有结构水(—OH)1 981, 2 110和3 311 cm-1的吸收峰, 可作为特征峰与中国山东昌乐方山矿区刚玉相区别。 缅甸抹谷Le-shuza-kone矿区暗蓝色刚玉含结构水, 其形成过程中有水的参与, 而山东昌乐方山矿区的刚玉中没有结构水。 经电子探针测试和电价差法计算, 中国山东昌乐方山矿区刚玉中铁元素的存在形式为Fe2+, Fe3+的含量为0, Le-shuza-kone矿区刚玉中Fe2+占Fe总量的91.9%, Fe3+占Fe总量的8.1%。 创新性的在刚玉中铁元素的研究中引入了穆斯堡尔谱仪测试测得中国山东昌乐方山矿区刚玉内铁的赋存形式为Fe2+, 而非Fe2++Fe3+, 其深蓝色的体色是由Fe2+致色的, 而非前人推测的Fe2++Fe3+或Fe2++Ti4+价间电荷转移致色。
光谱学与光谱分析
2021, 41(2): 629
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 深圳技术大学创意设计学院, 广东 深圳 518118
3 上海建桥学院珠宝学院, 上海 201306
近期市场上出现了一种外形特殊的绿松石, 体色多呈现浓度不同的蓝绿色, 大部分表面都有大小不等的白色——浅蓝白色斑块和斑点, 斑块界限模糊, 部分品种表面有类似流纹的结构, 外表与压制绿松石极为相似, 这种绿松石原料主要产自于蒙古, 市场上俗称 “外蒙料”。 采用常规宝石学测试仪器, X射线荧光光谱、 红外吸收光谱、 激光拉曼光谱和X射线粉晶衍射等测试方法对这类“外蒙料”绿松石的宝石学性质、 化学成分及矿物组成等进行了较为详细的研究分析。 研究结果表明: “外蒙料”绿松石样品整体外观呈浅蓝绿至深蓝绿色, 颜色分布不均匀, 表面常见白色或浅蓝白色分布不均一的斑块或斑点, 内部常含有石英、 长石、 伊利石还有黄铁矿。 其折射率约为1.60~1.62, 相对密度约为2.43~2.76, 低于我国湖北和安徽的绿松石。 在长波紫外光下, 大部分样品可见较微弱的蓝白色荧光, 在短波紫外光下, 荧光为惰性。 “外蒙料”的主要化学成分均偏离绿松石理论化学成分值, w(Al2O3)在26.75%~30.30%之间, w(P2O5)在32.54%~36.40%之间, w(CuO)在6.99%~10.73%之间, w(FeO)在1.73%~4.39%之间, w(ZnO)在0.35%~2.93%之间, 属于绿松石——锌绿松石类质同像系列靠近绿松石的端元, 其中普遍含有一定量的SiO2, 质量分数可达2.38%~8.87%, 这一特点与国内其他产地绿松石几乎不含或含有极微量的SiO2不同。 X射线粉晶衍射及红外吸收光谱显示, “外蒙料”中不均匀分布的颜色斑块的主要组成矿物均为绿松石, 且整体未经优化处理, 为天然绿松石。 红外吸收光谱显示绿松石“外蒙料”的红外吸收光谱为结晶水、 羟基水及磷酸根基团的振动光谱, 与天然绿松石的红外吸收光谱特征一致。 “外蒙料”绿松石中不同透明度及颜色的杂质矿物的激光拉曼光谱测试分析表明该绿松石中所含有的白色不透明杂质矿物为钠长石, 白色半透明杂质矿物为石英, 黄铜色具有金属光泽的杂质矿物为黄铁矿。
绿松石 成分特征 红外吸收光谱 激光拉曼光谱 外蒙料 Turquoise Composition characteristics Infrared absorption spectroscopy Laser Raman spectroscopy Mongolia 
光谱学与光谱分析
2020, 40(7): 2164
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 上海建桥学院珠宝学院, 上海 201306
近期在市场上出现了许多与绿松石相似的天然矿物, 市场上俗称绿松石“伴生矿”, 被商家作为天然绿松石的特殊品种售卖。 这些与绿松石外观极为相似的天然矿物, 给鉴定工作带来了一定的困难。 为了探索识别的方法, 选取市场上常见的白色和黄色品种的天然绿松石伴生矿, 通过常规宝石学测试, 红外吸收光谱及X射线粉晶衍射对其宝石学特征及矿物组成进行了分析和研究。 结果表明: 白色系和黄色系天然似绿松石矿物样品均显示不同程度的土状光泽-弱玻璃光泽, 均不透明, 结构比较疏松。 白色系样品折射率约为1.51, 相对密度为1.86~2.28; 黄色系样品折射率约为1.57~1.60, 相对密度为2.32~2.72。 白色和黄色天然绿松石伴生矿的组成类型复杂, 同色系样品的矿物组成也不尽相同。 X射线粉晶衍射测试结果显示: 白色系样品的主要矿物为磷铝矾和磷钙铝矾; 黄色系样品的主要矿物为钠明矾石。 白色和黄色系样品的红外吸收光谱均显示有SO4/PO4的基团振动, 峰形、 峰位区别较大。 根据不同样品的主要矿物组成特征, 将其红外吸收光谱进行分类, 可对其进行快速有效的无损鉴定。
绿松石 伴生矿 红外吸收光谱 X射线粉晶衍射 矿物组成 Turquoise Associated minerals Infrared absorption spectrum X-ray powder diffract 
光谱学与光谱分析
2018, 38(10): 3084
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 中国地质大学(武汉)地球物理与空间信息学院, 湖北 武汉 430074
3 中国地质大学(武汉)地球内部多尺度成像湖北省重点实验室, 湖北 武汉 430074
绿松石的仿制品由来已久, 早期主要以染色压制碳酸盐为主, 后期陆续出现天然矿物的绿松石仿制品, 如染色磷铝石、 染色玉髓以及染色菱镁矿等, 这些仿制品普遍不具有天然绿松石的颜色和结构特征, 物理和光学性质与天然绿松石也有较大差异。 选取市场上新出现的一类绿松石仿制品为研究对象, 采用常规宝石学测试方法、 红外吸收光谱及X射线粉晶衍射重点对其矿物组成、 宝石学性质以及结构特征进行了研究。 研究结果表明: 该类绿松石仿制品表面可见角砾状构造, 铁线浮于表面, 分布形态单一, 蓝色样品上可见明显的深蓝色颗粒, 白色样品上见少量黑色点状物质, 为典型的压制处理特征, 蓝色绿松石仿制品则经染色压制处理。 此类绿松石仿制品折射率在1.54~1.58, 较天然绿松石低并具明显的蓝白色紫外荧光, 可作为鉴别其与天然绿松石差异的重要证据。 X射线粉晶衍射说明该类绿松石仿制品主要由顽火辉石与石英组成。 红外吸收光谱显示该类绿松石仿制品的吸收谱峰主要表现为顽火辉石的典型吸收光谱, 在1 088和799 cm-1附近的吸收峰则与石英中的Si—O和Si—O—Si伸缩振动有关; 2 947和2 882 cm-1附近的吸收峰与外来的有机树脂中CH2的伸缩振动有关, 1 736和1 510 cm-1附近的吸收峰, 则由CO伸缩振动和CH2的弯曲振动所致。
绿松石 绿松石仿制品 红外吸收光谱 X粉晶衍射 顽火辉石 Turquoises Imitation of turquoise Infrared absorption spectroscopy X-ray diffraction Entatite 
光谱学与光谱分析
2016, 36(8): 2629
作者单位
摘要
1 中国地质大学地球物理与空间信息学院,地球内部多尺度成像湖北省重点实验室, 湖北 武汉 430074
2 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
3 中国地质大学(武汉)地质过程与矿产资源国家重点实验室, 湖北 武汉 430074
4 中国地质大学(武汉)地球科学学院, 湖北 武汉 430074
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究.结果表明,其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关.拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间.300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致.482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移.726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移.
宝石级钠沸石 红外光谱 激光拉曼光谱 Gem-quality natrolite Infrared spectrum Raman spectrum 
光谱学与光谱分析
2015, 35(8): 2186

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!