作者单位
摘要
1 南京信息工程大学气象灾害教育部重点实验室,气候与环境变化国际合作联合实验室,气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044
2 中国气象科学研究院灾害天气国家重点实验室,北京 100081
3 中国气象局广州热带海洋气象研究所,广东 广州 510641
4 中国科学院大气物理研究所,中层大气和全球环境探测重点实验室,北京 100029
利用广州高建筑物雷电观测站获得的600 m高广州塔上一次闪电3个回击放电过程的光谱资料,详细分析了广州塔上闪电光谱随时间的演化和随高度的变化特性,并通过对比实测的一组氮原子(NI)[856.8 nm,859.4 nm,862.9 nm]多重态的谱线强度比和理论计算值之比,验证了闪电近红外光辐射满足光学薄条件。结果表明:3个回击放电通道约在200 m以下发光较强;在回击放电初期,当向上传输的电流波还未到达通道顶部时,底部通道径向辐射光谱由较强的离子线和较弱的中性原子线组成,而通道顶部径向辐射光谱主要取决于下行先导,由较弱的离子线和较强的中性原子线组成;当回击电流波向上传输到通道顶部后,整个通道径向辐射出很强的离子线和很强的中性原子线,且离子线总强度和原子线总强度均随通道高度的增加而减小;在回击放电70 μs以后,200 m以上通道离子线总强度和原子线总强度随通道高度的增加基本保持不变。此观测结果也直接证实了闪电放电通道由一个辐射离子线的高温核心和一个辐射中性原子线温度相对较低的外围电晕组成。
光谱学 可见光谱 近红外光谱 广州塔闪电 放电通道 光学薄 
光学学报
2023, 43(12): 1230001
作者单位
摘要
1 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
2 中国气象科学研究院灾害天气国家重点实验室, 北京 100081
3 中国科学院中层大气和全球环境探测重点实验室, 北京 100029
4 西北师范大学物理与电子工程学院, 甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
连续电流是闪电放电过程中的一个重要子物理过程, 它是指雷暴云局部电荷中心在回击之后沿原通道对地的持续放电过程。 在连续电流阶段, 原本发光微弱的通道其亮度有时会突然增强, 这种现象被称为叠加了M分量, 自20世纪连续电流被发现以来, 国内外学者进行了许多观测研究。 目前主要是利用电磁学和光学的观测手段揭示其放电和发光的宏观特征, 利用光谱观测对其通道内部微观的发光信息和物理特性等的研究还很缺乏。 如关于连续电流阶段放电通道内的温度特性参数目前鲜有报道, 而温度是研究闪电连续电流放电通道物理特性所必需的基本参量, 也是预防连续电流引起的雷电灾害事故所关心的参数。 依据由无狭缝高速光谱仪观测的一次云对地闪电首次回击后叠加三个M分量的连续电流过程的光谱资料, 分析了整个放电过程中光谱的演化特征, 计算了连续电流放电过程电流核心通道和外围电晕通道的温度, 研究了两者随通道高度的变化特性。 结果表明, 在初始回击阶段, 通道的光辐射主要是激发能较高的一次电离的氮离子辐射, 在之后连续电流阶段, 通道的光辐射则主要是激发能较低的中性氮、 氧原子辐射。 离子线辐射在回击初期时最强, 氢Hα线和红外波段的中性原子线在M1时最强, 连续谱在M2时最强。 近红外波段的四条线OⅠ 777.4, NⅠ 746.8, 821.6和868.3 nm在整个放电过程都可以被观测到。 在连续电流阶段, 电流核心通道温度为42 060~43 940 K, 比相应回击核心通道温度高6 020~7 900 K; 外围电晕通道温度为16 170~20 500 K; 通道核心温度和电晕温度均随时间变化不大; 通道核心温度随通道上升呈减小趋势, 而外围电晕温度随通道上升呈增大趋势。
闪电连续电流 光谱 电流核心通道 电晕通道 温度 Continuing current Spectrum Current-carrying channel Corona sheath Temperature 
光谱学与光谱分析
2022, 42(7): 2069
张华明 1,2,*吕伟涛 1张阳 1张义军 1,3[ ... ]齐奇 1
作者单位
摘要
1 中国气象科学研究院 灾害天气国家重点实验室/雷电物理和防护工程实验室, 北京 100081
2 山西省气象灾害防御技术中心, 太原 030002
3 复旦大学 大气科学研究院, 上海 200439
利用无狭缝光谱仪获得了一次人工触发闪电过程的发射光谱, 其时间分辨率为20 μs, 同时获得了通道底部电流强度, 对不同电流强度下闪电光谱的辐射特性进行了分析。根据谱线持续时间将谱线分为三类, 结合谱线激发能以及通道电流变化对影响谱线持续时间的原因展开了研究。对光谱总强度随时间的变化规律进行了分析, 对闪电光谱短波段与长波段连续背景辐射的不同机制进行了分析, 给出了两种辐射机制对连续背景辐射衰减的影响。
人工触发闪电 通道等离子体 闪电光谱 闪电电流 triggered lightning channel plasma lightning spectrum channel current 
中国光学
2019, 12(3): 670
张华明 1,2,*张义军 1,3吕伟涛 1张阳 1[ ... ]樊艳峰 1
作者单位
摘要
1 中国气象科学研究院灾害天气国家重点实验室/雷电物理和防护工程实验室, 北京 100081
2 山西省气象灾害防御技术中心, 山西 太原 030002
3 复旦大学大气科学研究院, 上海 200438
4 新疆气象灾害防御技术中心, 新疆 乌鲁木齐 830001
利用无狭缝光谱仪获得了一次空中触发闪电过程中400~660 nm的发射光谱, 对空中触发闪电小回击和上行正先导通道的发射光谱进行了分析, 讨论了人工触发闪电导线通道与空气通道光谱的差异, 发现导线段通道光谱持续了约140 ms, 而空气段通道仅持续了0.167 ms; 结合Fe, N, O等元素的电离能、 激发能, 给出了导线通道亮度强、 持续时间长的原因。 在电流强度相同的情况下, 人工触发闪电通道的导线段有更多的粒子被激发, 能产生更多的光谱辐射, 导线段通道的亮度远强于空气段, 导线段通道的光谱强度也远强于空气段; 在随后的等离子体通道消散阶段导线段闪电通道的复合反应持续时间也更长。 通过对小回击以及上行正先导导线通道上部、 下部空气段光谱结构以及通道温度等参数与广东地区自然闪电特征谱线及温度等参数的比较, 发现小回击通道光谱主要由NⅡ离子低激发态之间的跃迁组成, 具有NⅡ 444.7 nm, NⅡ 517.9 nm, NⅡ 616.8 nm等广东地区一般强度自然闪电的特征谱线。 上行正先导下部空气段通道具有高激发能的谱线开始消失, 出现了Hα, Hβ, OⅠ 615.8 nm等激发能较低的谱线, 具有闪电回击后期的光谱结构。 小回击通道以及上行正先导通道下部空气段温度分别为21 000和20 000 K, 通道温度低于自然闪电温度。
空中触发闪电 导线通道 空气通道 闪电光谱 Altitude triggered lightning Metal channel Air channel Lightning spectra 
光谱学与光谱分析
2018, 38(12): 3673
作者单位
摘要
1 中国气象科学研究院灾害天气国家重点实验室/雷电物理和防护工程实验室, 北京 100081
2 山西省雷电防护监测中心, 山西 太原 030002
用无狭缝光谱仪获得了广东地区一次人工触发闪电首次回击过程的发射光谱, 同时测量了回击电流峰值为183 kA, 回击持续时间为45 ms。 发现导线部分通道的发射谱线中存在4075, 4190, 4253和5179 nm等激发能比较高的谱线, 具有强闪电通道发射光谱的谱线结构, 空气部分则具有弱闪电通道的谱线结构; 导线部分与空气部分的基本谱线的相对强度差别较小, 强闪电特征谱线相对强度相差非常大。 通过对导线部分与空气部分谱线激发能等参数的分析, 发现回击开始时, 导线部分先导通道还未完全消失, 回击脉冲电流对先导闪电通道等离子体进行了进一步激发, 增加了等离子体的温度和密度, 使得导线部分具有较高激发能的谱线被完全激发, 相对于空气部分4075, 4190, 4253和5179 nm等谱线的强度有较大程度的增加, 造成导线部分通道与空气通道两种不同的光谱结构。 通过光谱分析, 获得了闪电通道不同部分的温度、 电子密度等参数, 发现导线部分通道的辐射特性不同于空气通道是导线部分通道发光亮度与电流相关性较差的原因。
人工触发闪电 导线通道 空气通道 闪电光谱 Triggered lightning Wire channel Air channel Lightning spectra 
光谱学与光谱分析
2017, 37(6): 1692

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!