作者单位
摘要
1 南京信息工程大学气象灾害教育部重点实验室,气候与环境变化国际合作联合实验室,气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044
2 中国气象科学研究院灾害天气国家重点实验室,北京 100081
3 中国气象局广州热带海洋气象研究所,广东 广州 510641
4 中国科学院大气物理研究所,中层大气和全球环境探测重点实验室,北京 100029
利用广州高建筑物雷电观测站获得的600 m高广州塔上一次闪电3个回击放电过程的光谱资料,详细分析了广州塔上闪电光谱随时间的演化和随高度的变化特性,并通过对比实测的一组氮原子(NI)[856.8 nm,859.4 nm,862.9 nm]多重态的谱线强度比和理论计算值之比,验证了闪电近红外光辐射满足光学薄条件。结果表明:3个回击放电通道约在200 m以下发光较强;在回击放电初期,当向上传输的电流波还未到达通道顶部时,底部通道径向辐射光谱由较强的离子线和较弱的中性原子线组成,而通道顶部径向辐射光谱主要取决于下行先导,由较弱的离子线和较强的中性原子线组成;当回击电流波向上传输到通道顶部后,整个通道径向辐射出很强的离子线和很强的中性原子线,且离子线总强度和原子线总强度均随通道高度的增加而减小;在回击放电70 μs以后,200 m以上通道离子线总强度和原子线总强度随通道高度的增加基本保持不变。此观测结果也直接证实了闪电放电通道由一个辐射离子线的高温核心和一个辐射中性原子线温度相对较低的外围电晕组成。
光谱学 可见光谱 近红外光谱 广州塔闪电 放电通道 光学薄 
光学学报
2023, 43(12): 1230001
作者单位
摘要
1 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
2 中国气象科学研究院灾害天气国家重点实验室, 北京 100081
3 中国科学院中层大气和全球环境探测重点实验室, 北京 100029
4 西北师范大学物理与电子工程学院, 甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
连续电流是闪电放电过程中的一个重要子物理过程, 它是指雷暴云局部电荷中心在回击之后沿原通道对地的持续放电过程。 在连续电流阶段, 原本发光微弱的通道其亮度有时会突然增强, 这种现象被称为叠加了M分量, 自20世纪连续电流被发现以来, 国内外学者进行了许多观测研究。 目前主要是利用电磁学和光学的观测手段揭示其放电和发光的宏观特征, 利用光谱观测对其通道内部微观的发光信息和物理特性等的研究还很缺乏。 如关于连续电流阶段放电通道内的温度特性参数目前鲜有报道, 而温度是研究闪电连续电流放电通道物理特性所必需的基本参量, 也是预防连续电流引起的雷电灾害事故所关心的参数。 依据由无狭缝高速光谱仪观测的一次云对地闪电首次回击后叠加三个M分量的连续电流过程的光谱资料, 分析了整个放电过程中光谱的演化特征, 计算了连续电流放电过程电流核心通道和外围电晕通道的温度, 研究了两者随通道高度的变化特性。 结果表明, 在初始回击阶段, 通道的光辐射主要是激发能较高的一次电离的氮离子辐射, 在之后连续电流阶段, 通道的光辐射则主要是激发能较低的中性氮、 氧原子辐射。 离子线辐射在回击初期时最强, 氢Hα线和红外波段的中性原子线在M1时最强, 连续谱在M2时最强。 近红外波段的四条线OⅠ 777.4, NⅠ 746.8, 821.6和868.3 nm在整个放电过程都可以被观测到。 在连续电流阶段, 电流核心通道温度为42 060~43 940 K, 比相应回击核心通道温度高6 020~7 900 K; 外围电晕通道温度为16 170~20 500 K; 通道核心温度和电晕温度均随时间变化不大; 通道核心温度随通道上升呈减小趋势, 而外围电晕温度随通道上升呈增大趋势。
闪电连续电流 光谱 电流核心通道 电晕通道 温度 Continuing current Spectrum Current-carrying channel Corona sheath Temperature 
光谱学与光谱分析
2022, 42(7): 2069
作者单位
摘要
1 兰州理工大学理学院物理系, 甘肃 兰州 730050
2 西北师范大学物理与电子工程学院, 甘肃 兰州 730070
3 南京信息工程大学大气物理学院, 江苏 南京 210044
4 山西师范大学物理与信息工程学院, 山西 临汾 041004
闪电回击通道核心中的大电流及其强电磁辐射是引发多种雷电灾害的主要根源。 随着现代科技的飞速发展, 闪电防护工作显得越为重要。 为了完善闪电防护系统, 需要从描述闪电回击通道核心的特征参数入手深入研究闪电通道形成和发展过程的微观物理机制。 截至目前, 光谱观测是获取闪电通道核心特征参数的最佳手段。 2015年夏天在青海高原地区的野外试验中, 利用由高速摄像机作为记录系统组装的无狭缝光栅摄谱仪, 结合快天线地面电场测量仪, 记录到一次包括四个回击的云地闪电放电过程的光谱以及与之同步的快电场变化信息。 依据光谱, 结合等离子体理论计算得到闪电回击通道核心的电导率。 在此基础上, 应用闪电电动力学模型计算了闪电回击速度、 峰值电流、 贯穿通道核心的电磁场以及通道核心单位长度的峰值功率等特征参数。 结果表明, 回击速度在(1.2~2.3)×108 m·s-1的范围内; 贯穿回击通道核心的轴向电场、 径向电场和磁感应强度的最大值分别在(1.42~1.74)×105 V·m-1, (8.22~9.99)×108 V·m-1和(1.51~2.83) T的范围内。 当闪电回击的峰值电流在(7.52~24.05) kA的范围内时, 回击通道核心的峰值功率在(0.63~1.92)×109 W·m-1的范围内。 另外, 分析了电导率、 起始电场峰值、 回击速度和峰值电流与峰值功率之间的相关性, 结果发现峰值电流和峰值功率具有良好的线性关系。 研究结果可为探索闪电回击通道形成和发展过程的微观物理机制提供参考依据。
闪电光谱 回击通道核心 特征参数 物理机制 Lightning spectrum Return stroke channel core Characteristic parameters Physical mechanism 
光谱学与光谱分析
2021, 41(10): 3269
作者单位
摘要
1 南京信息工程大学气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
2 西北师范大学物理与电子工程学院, 甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
闪电放电通道的电阻及电流产生的热效应对雷电灾害研究以及防护设计都具有重要意义, 放电通道的热力学特性与其等离子体辐射光谱密切相关。 利用无狭缝摄谱仪获得的两次云对地多回击闪电放电的等离子体辐射光谱, 依据谱线波长、 强度等信息, 结合同步地面电场变化资料, 应用空气等离子体传输理论, 计算了闪电回击放电通道的电导率、 峰值电流、 核心通道半径, 进而得到了闪电回击等离子体通道单位长度的电阻、 峰值电流时的热功率及在回击初始前5 μs内通道储存的热能。 并与常规金属导体进行比较, 分析了闪电回击放电在峰值电流时等离子体通道的热功率与电阻、 电流平方之间的相关性关系。 结果表明: 利用光谱研究得到的闪电放电通道的电阻为0.04~8.41 Ω·m-1、 峰值电流时的热功率为0.88×108~2.20×108 W·m-1、 回击初始前5 μs内通道储存的热能为1.47×102~3.66×102 J·m-1, 以上结果与文献报道的利用其他方法得到的结果相比, 在合理的范围内; 与常规金属导体相比, 闪电回击放电等离子体通道在峰值电流时的热功率与电阻成正比, 但与电流的平方呈指数减小的关系; 由于闪电等离子体通道的电阻与温度的3/2次方成反比, 通常回击放电通道中峰值电流越大, 通道温度越高, 而电阻会迅速降低, 因此热功率也会急剧减小。 此结论进一步验证了采用欧姆加热方法加热等离子体的致命缺点。
闪电回击通道, 电阻, 热功率, 热能 Channel of lightning return stroke Resistance Thermal power Heat energy 
光谱学与光谱分析
2019, 39(12): 3718
作者单位
摘要
西北师范大学物理与电子工程学院甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
依据3个闪电回击过程的时间分辨光谱,采用不同的方法计算闪电核心电流通道温度及外围发光通道温度,研究了回击电流衰减过程中通道温度随时间的演化特性。结果表明,核心电流通道温度比外围发光通道温度高4000~5000 K。在峰值电流之后,相比于电流的变化,通道温度的衰减更为缓慢。峰值电流之后约400 μs时,通道温度仍维持在20000 K左右,如此长时间的高温导致的热效应是许多闪电灾害的主要根源。
光谱学 闪电通道温度 Saha方程 Stark加宽 
光学学报
2016, 36(6): 0630001
作者单位
摘要
1 西北师范大学物理与电子工程学院, 甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000
依据无狭缝光栅摄谱仪在青海获得的云对地闪电回击光谱信息, 结合空气等离子体传输理论, 用四种不同方法计算了同一闪电放电通道的电导率。 结果表明: 各种方法所得闪电核心通道的电导率数量级均为104 S·m-1; 且同一通道内的电导率随通道高度的增加有减小的趋势; 通道内电子与一次、 二次电离离子的碰撞以及它们各自的碰撞对通道电导率的贡献不可忽略; 用碰撞积分的方法计算闪电核心通道的电导率结果更为合理。 在通道电导率的基础上估算了回击通道的放电电流, 与辐射峰值电场实验资料所得的相应峰值电流相比, 其结果在合理的范围内, 并进一步探讨了温度与电流放电特性的相关性, 为研究闪电放电电流提供了一条可行的途径。
闪电放电通道 电导率 放电电流 峰值电流 作用积分 Lightning discharge channel Electrical conductivity Discharge current Peak value of current Action integral 
光谱学与光谱分析
2013, 33(12): 3192

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!