杨晨 1,2叶梦琳 1,2周文理 1,2,*
作者单位
摘要
1 光能转换材料湖南省高校重点实验室, 湖南 长沙  410081
2 湖南师范大学 化学化工学院, 湖南 长沙  410081
Mn4+掺杂的氟化物红色荧光粉的耐湿性差,严重影响了白色发光二极管(WLEDs)的光色稳定性。本工作基于绿矾溶液的还原性,将K2SiF6∶Mn4+颗粒表面的Mn4+还原成可溶的低价态Mn2+,实现了氟化物粒子的表面钝化及高耐湿性。在水浸360 h后,表面钝化的K2SiF6∶Mn4+粒子的发光强度仍保持初始强度的95%,而未处理的K2SiF6∶Mn4+颗粒发光强度迅速降为初始值的46%。此外,采用绿矾溶液对表面已水解的氟化物荧光粉进行简单的浸泡,可使其完全恢复原来的发光强度。电感耦合等离子体-原子发射光谱、X射线光电子谱、元素能谱等表征结果显示,经绿矾溶液处理的K2SiF6∶Mn4+粒子表面的Mn4+浓度显著减小,证实了惰性壳层K2SiF6的形成,揭示了氟化物粒子耐湿性显著提升的原因。此外,经高温(85℃)高湿(85%)的条件老化1 000 h后,WLEDs器件中表面钝化的K2SiF6∶Mn4+粒子仍保持着100%的红色发光强度,明显高于未钝化的氟化物的59%,进一步证实了绿矾溶液钝化的K2SiF6∶Mn4+红色荧光粉具有非常优异的环境稳定性。
Mn4+掺杂 红色荧光粉 耐湿性 绿矾溶液 表面钝化 Mn4+ doping red phosphor moisture resistance green alum solution surface passivation 
发光学报
2024, 45(2): 299
作者单位
摘要
1 湖南师范大学 化学化工学院,湖南 长沙 410081
2 湖南普斯赛特光电科技有限公司,湖南 长沙 410116
耐湿性差是掺Mn4+氟化物红色荧光粉在高稳定性器件应用中面临的一个瓶颈问题。本工作提出利用乳糖酸的钝化效应清除K2SiF6∶Mn4+表面的Mn4+,重构无Mn4+的氟化物惰性壳层,以提升其耐湿性。结果表明,经乳糖酸钝化后的氟化物的晶相、形貌及发光强度几乎不变。水浸360 h后,钝化的氟化物的内量子效率为96.9%,远高于未处理的氟化物的59.8%。经乳糖酸处理,水解后的氟化物的内量子产率可以恢复到98.8%。在60 mA驱动电流下,将钝化后的氟化物作为红光成分,封装了相关色温为3 518 K、显色指数为88.5、发光效率为130.61 lm·W-1的暖白光LED。在高温(85℃)高湿(85%)环境中老化500 h后,该LED器件具有较高稳定性,光效可维持为初始值的90.5%,高于未经处理的氟化物所封装的白光器件(82.3%)。因此,简单的乳糖酸处理可以有效提升掺Mn4+氟化物的耐湿性。本工作可为高稳定性氟化物红色荧光粉的工业化生产提供借鉴。
K2SiF6∶Mn4+ 耐湿性 惰性壳层 白光LED 乳糖酸 K2SiF6∶Mn4+ moisture resistance inert shell white LED lactobionic acid 
发光学报
2022, 43(8): 1300
作者单位
摘要
湖南师范大学 化学化工学院, 湖南 长沙 410081
采用两步烧结法低温制备了Sr2MgAl22O36∶Mn4+-(SiO2-Al2O3-ZnO-BaO)荧光玻璃(SMA∶Mn4+-PiG)。通过X射线衍射、扫描电镜、光致激发和发射光谱、荧光衰减曲线等手段对其物相、成分与发光性能进行了研究。实验结果表明, 形成PiG后, SMA∶Mn4+荧光粉的物相和元素组成保持不变。不同SAM∶Mn4+含量的PiG样品在328 nm光激发下, 在661 nm处均显示强的发射带, 归属于荧光粉中Mn4+的2E→4A2跃迁, 发光光谱与植物光敏色素的红区吸收光谱匹配良好。随着荧光粉含量的增加, SAM∶Mn4+-PiG的发光强度逐渐增大。15%SMA∶Mn4+-PiG样品的内、外量子效率分别为26%和20%, 低于SMA∶Mn4+荧光粉的59%和40%。相比于SMA∶Mn4+荧光粉, 荧光玻璃的吸收效率和热稳定性略有提高。通过与高功率紫外芯片封装, SMA∶Mn4+-PiG红光LED器件在100 mA驱动电流下展现了最高的电致发光强度
荧光玻璃 植物生长 发光二极管 phosphor-in-glass plant growth Mn4+ Mn4+ LED 
发光学报
2021, 42(5): 717
作者单位
摘要
湖南师范大学 化学化工学院, 资源精细化与先进材料湖南省高校重点实验室, 湖南 长沙 410081
采用高温熔融法制备了Ce3+/Tb3+/Sm3+掺杂的CaO-B2O3-SiO2(CBS)发光玻璃。通过傅利叶红外光谱仪、荧光光谱仪表征了该系列发光玻璃的微观结构和发光性质, 并对Ce3+到Tb3+、Ce3+到Sm3+之间的能量传递机制进行了研究。结果表明, 在339, 378, 407 nm激发下, 单掺Ce3+、Tb3+和Sm3+的CBS玻璃分别发射紫蓝光、绿光和红光, 恰好符合混合合成白光的条件。Ce3+/Tb3+和Ce3+/Sm3+双掺CBS玻璃的发射光谱以及Ce3+衰减寿命的变化证实了Ce3+→Tb3+和Ce3+→Sm3+之间存在能量传递, 随Tb3+和Sm3+浓度增加, Ce3+的寿命减小, 且传递效率由5.4%和5.7%分别增加至24.0%和27.1%。调节3种稀土离子的掺杂浓度并选择合适的激发波长, 实现了发光颜色可调, 并最终获得白光发射。
发光玻璃 高温熔融法 能量传递 发光调控 luminescent glass high temperature melting method energy transfer luminescence modulation 
发光学报
2018, 39(9): 1239
作者单位
摘要
湖南师范大学化学化工学院 资源精细化与先进材料湖南省高校重点实验室, 湖南 长沙 410081
采用高温固相法合成Ca0.8Zn0.2TiO3∶0.2%Pr3+,Si4+和Ca0.8Zn0.2TiO3∶0.2%Pr3+,Si4+,Lu3+荧光粉。通过X射线衍射仪、电子顺磁共振光谱仪、显微拉曼光谱仪和荧光光谱仪等表征了该系列荧光粉的物相组成、微观结构和发光性质。结果表明, 以β-Si3N4为硅源制备的荧光粉具有最佳的光学性能。加入ZnO后, 荧光粉由CaTiO3、Zn2TiO4和Ca2Zn4Ti16O38三相组成, 其中CaTiO3为主相。电子顺磁共振谱证实了Pr4+存在, Lu3+的添加使[Pr4+Ti3+O3]+簇显著增加, 电子顺磁共振谱和拉曼光谱均证实Si4+、Lu3+的掺杂使局部TiO6簇对称性提高, 有利于Pr3+发光中心的能量传递。在336 nm激发下, 荧光粉展示了很强的位于612 nm的红光发射(归属于Pr3+的 1D2 →3H4跃迁)及理想的红光色坐标(x=0.670, y=0.330)。Si4+和Lu3+的添加显著增强了370 nm激发下红光发射, Ca0.8Zn0.2TiO3∶0.2%Pr3+,3.2%Si4+荧光粉的余辉寿命最长。
Lu3+掺杂 红色长余辉 Ca0.8Zn0.2TiO3∶Pr3+ Ca0.8Zn0.2TiO3∶Pr3+ β-Si3N4 β-Si3N4 Lu3+ doped red long persistence 
发光学报
2018, 39(5): 643

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!