作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林长春30033
2 长春长光格瑞光电技术有限公司,吉林长春13010
3 长春国科医工科技发展有限公司,吉林长春10102
为了实现超宽谱段与高分辨率特点兼具的中阶梯光栅光谱仪系统,提出了一种光路结构设计,并针对其深紫外波段的有效探测方法进行了研究及验证。该光路结构结合准Littrow结构与C-T结构的优势,保证了色散光路具备高衍射效率,同时很好地抑制了杂散光。在有限可选光学材料下,采用多重评价优化方式获得中阶梯光栅光谱仪的光学结构参数。通过加入由球透镜及柱透镜组成的校正结构,有效地校正了像差,提高了光谱分辨率。最后,针对深紫外波段探测的解决方案进行模态分析,验证了所设计方案的可行性。最终在160~1 000 nm的超宽波段范围内,成像光斑的RMS值优于12.1 µm,在257.61 nm处的光谱分辨率优于0.009 nm,能够满足超宽谱段、高分辨率检测系统的色散分光需求。
光学设计 中阶梯光栅光谱仪 超宽谱段 高分辨率 optical design echelle spectrometer ultra-wide wavelength range high resolution 
光学 精密工程
2021, 29(1): 45
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
高光谱成像(HSI)是一种新兴的快速、 安全的现代医学检测技术。 将自行研制的高光谱成像仪与显微镜相结合, 对人源脑胶质瘤小鼠和H&E染色病理切片进行成像光谱研究。 通过对脑胶质瘤与正常脑组织的高光谱数据进行分析和处理, 获取二者之间的光谱差异以实现对脑胶质瘤与正常脑组织的区分。 实验结果表明, 无论是病理切片还是在体脑组织数据, 脑胶质瘤与正常脑组织反射光谱中特定光谱范围内的反射率均存在一定差异, 可据此对二者进行区分, 为今后临床实验与脑胶质瘤术中辅助诊断提供依据和参考。
高光谱成像 反射光谱 脑胶质瘤 Hyperspectral imaging Reflectance spectrum Glioma 
光谱学与光谱分析
2020, 40(12): 3784
作者单位
摘要
1 长春长光格瑞光电技术有限公司,长春3002
2 中国科学院长春光学精密机械与物理研究所,长春130033
3 长春国科医工科技发展有限公司,长春10000
设计了一种后分光式的小型平像场分光光度计。采用多通道硅光电二极管阵列探测器与平场凹面全息光栅,并集成准直?聚焦单元进行一体封装,基于选定的平场凹面光栅完成光谱仪单元结构分析及设计,提出了光谱带宽增宽效应分析及波长误差评估预计方法。在预定的工作波段范围内得到了近似平直的光谱面,实现单次接收信号光束的多波长同步测量,工作波段覆盖340 nm~800 nm,光谱带宽优于8 nm。
分光光度计 光谱仪 生化分析 吸光度 spectrophotometer spectrometer biochemical analysis absorbance 
光电子技术
2020, 40(3): 170
朱继伟 1,*孙慈 2杨晋 2马婷婷 1[ ... ]张健 1
作者单位
摘要
1 长春长光格瑞光电技术有限公司, 吉林 长春 130102
2 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了基于中阶梯光栅光谱仪特殊的二维原始光谱图像实现各波长与其强度信息的一一对应, 进而得到可以直接读取所需波段或波长光信号强度信息的一维光谱曲线。对其原始光谱进行分析研究, 通过获得接收像面上各波长光斑位置与探测器像元的精确对应关系, 实现谱图的还原处理。采用多项式拟合方法分别对中阶梯光栅光谱仪的棱镜色散方向和光栅色散方向上光斑的位置坐标进行拟合, 建立起波长与像面之间的关系式, 为减小光线追迹数量, 同时采用级次间拟合的方式建立谱图还原模型。实验结果表明: 通过该方法, 可实现快速、高精度的谱图还原模型建立, 模型的计算误差最大为0.023 92 mm, 即谱图还原精度优于1个像元。该算法具有较强的灵活性和普适性, 适用于各类中阶梯光栅光谱仪的谱图还原模型计算。
中阶梯光栅光谱仪 谱图还原 交叉色散 多项式拟合 光线追迹 echelle grating spectrometer spectrogram reduction crossed dispersion polynomial fitting ray tracing 
光学 精密工程
2020, 28(8): 1627
陈建军 1,2,*崔继承 1,*刘嘉楠 1,2刘建利 1,2[ ... ]孙慈 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所国家光栅制造与应用工程技术研究中心, 吉林 长春 130033
2 中国科学院大学大珩学院, 北京 100049
在短波红外成像光谱技术的应用背景下,对HgCdTe短波红外焦平面探测器的校正技术进行研究,包括坏像元校正和非均匀性校正,并提出先进行坏像元校正后进行非均匀性校正的探测器校正原则;在标准辐射源下,对正常像元的输出值进行正态分布拟合,并通过3σ准则设定正常像元输出值阈值的方法,确定探测器中坏像元的数量与位置,然后根据短波红外成像光谱技术的应用要求,对坏像元进行光谱二邻域均值替换;坏像元校正完成后,再采用运算量小、实时性强的两点法对探测器进行非均匀性校正。综合校正结果表明:探测器坏像元得到有效剔除,坏像元输出值得到良好校正,且非均匀性校正效果明显,图像细节更加丰富。
探测器 校正技术 HgCdTe 红外焦平面探测器 坏像元校正 非均匀性校正 
光学学报
2019, 39(2): 0204001
刘嘉楠 1,2,*崔继承 1尹禄 1,2孙慈 1[ ... ]刘建利 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
作为对天文光谱进行观测的仪器, 成像光谱仪有着十分重要的作用。 由于传统的狭缝型成像光谱仪的狭缝限制, 对面源天体的观测需多次扫面, 才能获得完整的面源三维数据立方体(x, y; λ), 这样将会浪费大量的观测时间。 为了实现目标物体三维数据立方体的快速扫描, 提出了一种基于微透镜阵列的无狭缝、 静态化、 快速高效的可见光到近红外波段积分视场成像光谱仪结构, 并对其基本工作原理进行分析。 为了扩展微透镜阵列积分视场成像光谱仪在医学、 农业、 物探等其他领域的应用潜能, 该研究的光谱波段选择可见光到近红外波段。 根据视场积分的工作原理, 分析和设计了像方远心结构的离轴三反前置成像系统。 系统采用视场离轴方式, 波段范围400~900 nm, 相对口径F/5, 主镜、 次镜和三镜皆为二次非球面, 二次非球面系数分别为: -7.05, -0.92和-1.61。 为减小系统体积, 在离轴三反系统的焦平面附近放置反射镜。 系统在奈奎斯特空间频率60 lp·mm-1处, 调制传递函数大于0.75, 成像质量接近衍射极限, 满足系统要求。
微透镜阵列 积分视场成像光谱仪 像方远心离轴三反 视场离轴 Lenslet array Integrated field of view imaging spectrometer Telecentric off-axis three-reflection system Field of view off the axis 
光谱学与光谱分析
2018, 38(10): 3269
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了获得宽波段高分辨率的单色光, 对成像光谱仪进行了波长标定, 设计了一款扫描式三光栅单色仪。光栅扫描系统采用蜗轮蜗杆机构, 针对传统安装方式带来的光栅有效口径损失及杂散光等问题, 创造性地提出了蜗轮蜗杆转台偏轴安装的方法, 通过蜗轮蜗杆转台初始位置的偏移, 有效抑制了扫描过程中光栅实际有效口径的减小和仪器杂散光增加等问题。单色仪光学系统采用水平式C-T结构, 通过三块光栅实现280~2 240 nm的宽波段输出, 保证整个波段内的高衍射效率和光谱分辨率; 并针对蜗轮蜗杆的非线性扫描, 使用多种数学模型对单色仪系统进行了光谱定标。最终的实验和测量证明, 仪器在280~560 nm、560~1120 nm、1 120~2 240 nm三个波段的光谱分辨率分别为0.1、0.2、0.4 nm, 波长重复性分别为 0.094、0.186、0.372 nm, 波长准确度分别为0.096、 0.191、0.382 nm, 达到了设计目标, 满足成像光谱仪波长定标的使用要求。
光栅单色仪 光学设计 蜗轮蜗杆 光谱标定 grating monochromator optical design worm and worm wheel spectral calibration 
红外与激光工程
2018, 47(2): 0220002
沈春洋 1,2,*崔继承 1孙慈 1王玮 1,2[ ... ]李晓天 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
中阶梯光栅具有刻线密度低、 闪耀角度大、 衍射级次高、 光谱范围宽、 色散率大、 光谱分辨率高等一系列突出优点, 近年来由于其优良的性能而倍受青睐。 作为评价中阶梯光栅质量的衍射效率和杂散光系数直接体现了中阶梯光栅的光学性能, 能够准确地进行中阶梯光栅衍射效率和杂散光系数的测量是光栅应用的前提。 鉴于此, 基于中阶梯光栅的衍射理论创造性地提出用一套系统对中阶梯光栅的衍射效率和杂散光系数进行检测, 该系统引入双轨结构, 具有结构简单新颖、 一机多能等优点。 通过理论分析和计算, 确定了检测系统的结构参数, 设计结果表明: 该检测系统可用于测量190~1 100 nm光谱范围内的中阶梯光栅绝对衍射效率, 同时也可用于测量200~800 nm光谱范围内的中阶梯光栅杂散光系数, 实现了将衍射效率测量和杂散光测量集于一体的设计思想。
中阶梯光栅 衍射效率 杂散光 光学设计 Echelle Diffraction efficiency Stray light Optical design 
光谱学与光谱分析
2017, 37(8): 2603
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了保证中阶梯光栅光谱仪能够具有足够的波段范围, 设计了一套校正装置,对该校正装置的校正原理、波段校正范围、校正分辨率等问题进行了讨论和研究。首先, 对中阶梯光栅光谱仪的光学元件进行了公差分析, 并介绍了自动光谱校正的原理和流程。选定聚焦镜作为调整环节并根据CCD接收器像面的利用情况给出了调整分辨率要求, 然后设计了校正装置, 并对校正装置的分辨率进行了理论计算。最后, 对校正装置的校正效果进行了实验验证。实验结果表明: 校正装置在方位方向的校正分辨率可达0.006 25°、俯仰方向的分辨率可达0.006 25°、前后方向的分辨率可达0.005 mm。校正装置可以将10像素的波段偏移调整回CCD正常接收范围内, 从而保证光谱仪器的全谱段波段范围。
中阶梯光栅光谱仪 自动光谱校正 波段范围 echelle spectrometer auto spectrum calibration band range 
光学 精密工程
2017, 25(2): 304
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 长春工业大学, 吉林 长春 130012
为了能对自主研制的脑肿瘤手术医用显微成像光谱仪进行光谱定标, 设计了由单色仪、钨灯光源、棱镜-光栅-棱镜成像光谱仪及手术显微平台组成的光谱定标系统。采用单色仪波长扫描法, 自主开发了相应的光谱定标系统软件, 获得了显微成像光谱仪全谱段的光谱数据, 完成了数据处理和分析等工作。通过调整光路、单色仪定标、成像光谱仪定标3个步骤实现了系统的光谱定标。定标结果表明: 显微成像光谱仪的光谱区大于400~900 nm; 定标精度高于0.1 nm, 光谱分辨率高于3 nm, 各项特征指标均高于设计指标。测试验证实验表明, 所建立的光谱定标系统定标精准,结构简单、紧凑,操作简单, 符合显微成像光谱仪的实际临床应用要求。
医用成像光谱仪 显微成像光谱仪 光谱定标 单色仪 medical imaging spectrometer microscopic imaging spectrometer spectral calibration monochromator 
光学 精密工程
2016, 24(5): 1015

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!