作者单位
摘要
1 桂林理工大学环境科学与工程学院, 广西 桂林 541006
2 生态环境部华南环境科学研究院, 广东 广州 510000
CS2在当今化工等领域占据了重要地位, 而CS2火灾污染事故危害性极大。 通过研究CS2燃烧火焰光谱辐射以探究其火灾污染特性极为必要。 搭建了CS2燃烧火焰光谱测试平台, 采用黑体辐射源对VSR仪器进行了标定, 通过多用途傅里叶变换(VSR)红外光谱辐射仪测试了5, 10和20 cm三种燃烧尺度下CS2燃烧的火焰光谱, 并通过热电偶测试了整个燃烧时间段内不同燃烧时刻下的火焰温度, 以及在火焰上方安装了烟气分析仪对火焰中的燃烧产物浓度进行监测。 测量了CS2整个燃烧时间段内火焰温度, 以及不同燃烧时间、 不同燃烧尺度下的火焰光谱、 燃烧产物组分信息。 测试结果表明, CS2火焰中主要含有高温SO2, CO2, CO气体和空气中卷入的H2O分子, 并获取了特征污染产物SO2的浓度。 由于现有光谱仪测量分辨率有限, 室内实验测量的火焰尺度有限, 为了能实现火灾在线监测需要建立一个火焰光谱辐射模型来反演CS2火灾时的污染物浓度相关信息。 基于HITRAN数据库可知在2.7 μm附近为高温水蒸气的发射峰, 4.2 μm附近特征峰为高温CO2气体的发射峰, 4.7 μm附近有CO微弱的发射峰, 在7.4 μm附近特征峰为高温SO2气体的发射峰, 并获得了CS2燃烧时产生的SO2, CO2, CO和H2O气体在火焰燃烧相同温度下的吸收系数, 通过计算得到了CS2燃烧时产生的SO2, CO2, CO和H2O混合气体的透过率与发射率, 并结合气体辐射传输方程、 气体吸收系数等方程, 创建了CS2燃烧的火焰光谱辐射模型。 利用该光谱辐射模型反演了不同燃烧时间下特征污染产物SO2的浓度, 并与实验测得的数据进行了对比分析。 结果表明, 该模型精度高, 可用于燃烧产物浓度的定量化反演, SO2分子含量在燃烧时间20, 40, 60和80 s时的反演精度分别是89.5%, 82.5%, 85.6%和86.5%。 为遥感反演CS2型大尺度火灾中燃烧产物的浓度奠定基础。
二硫化碳 火焰光谱 光谱辐射模型 气体浓度定量反演 CS2 flame Flame spectrum Spectral radiation model Quantitative inversion of gas concentration 
光谱学与光谱分析
2022, 42(3): 672
作者单位
摘要
1 桂林理工大学环境科学与工程学院, 广西 桂林 541004
2 防化研究院, 北京 102205
近年来, 化工领域对二硫化碳需求日益增多, 而二硫化碳具有易燃易爆等特点。 在生产过程中易发生火灾事故, 危害性极大, 易造成经济损失和人员伤亡。 在火灾事故危害研究中, 火焰光谱研究极有必要。 因为火焰光谱中含有大量信息, 包括火焰温度、 燃烧组分、 各个波段的热辐射强度等信息。 以二硫化碳燃料为研究对象, 搭建了火焰光谱测试平台, 主要由VSR红外光谱仪、 伸缩装置、 燃烧器组成, 测试了5 cm燃烧尺度下二硫化碳、 苯乙烯、 乙腈、 乙酸乙酯燃料在1~14 μm红外波段上燃烧火焰光谱, 以及二硫化碳分别与苯乙烯、 乙腈、 乙酸乙酯三种不同燃料按照1∶1混合的火焰光谱, 获取了二硫化碳火焰光谱特征波段, 构建了二硫化碳火焰光谱特征库。 在燃料单独燃烧火焰光谱研究中, 二硫化碳燃料燃烧时火焰呈蓝色不发烟, 其火焰光谱辐射主要来自于高温下SO2, CO2和H2O三种分子辐射, 其中SO2特征峰为4.05, 7.4和8.51 μm, CO2特征峰为2.7和4.3 μm, H2O特征峰为2.5, 2.7和5.5~7 μm, 乙腈、 乙酸乙酯燃料燃烧火焰光谱特征基本一致, 火焰光谱辐射主要来自于高温下CO2, H2O分子辐射, 苯乙烯火焰光谱辐射除了高温气体辐射外还有较强的炭黑辐射, 炭黑辐射中心波长在7 μm, 温度大约在414 K。 除此之外, 苯乙烯燃料与其他三种化学品相比, 在3.6 μm波段处存在独有的C—H健伸缩振动峰。 二硫化碳火焰燃烧产物与苯乙烯、 乙腈、 乙酸乙酯三种燃料相比具有独有的SO2分子, 其在4.05, 7.4和8.51 μm处存在特有的特征峰, 这些特征峰可作为航天探测识别其火灾依据之一; 在燃料混合燃烧火焰光谱研究中, 二硫化碳与苯乙烯、 乙腈、 乙酸乙酯三种燃料混合燃烧时, 燃烧火焰光谱特征基本相似, 火焰光谱辐射主要来自高温下CO2, H2O和SO2分子辐射, 实验表明, 在混合燃烧时, 二硫化碳的火焰光谱特征峰未被其他燃料的组分干扰, 特征峰仍然明显。 这一研究结果可为后续利用航天遥感探测技术探测识别二硫化碳火灾研究奠定基础。
二硫化碳 火焰光谱 光谱数据库 红外光谱技术 Carbon disulfide Flame spectrum Spectral database Infrared spectroscopy 
光谱学与光谱分析
2020, 40(5): 1377
作者单位
摘要
桂林理工大学环境科学与工程学院, 广西 桂林 541006
在室内条件下提取了苯乙烯在不同土壤中的光谱诊断波段及其范围,并以其作为土壤中苯乙烯识别及其含量预测的依据。采用微分处理法与光谱数据转换法对土壤光谱反射率进行处理,以增大样品之间的光谱变化差异,并采用多元线性回归(SMLR)、偏最小二乘回归(PLSR)和支持向量机(SVMR)方法建模以预测不同土壤中的苯乙烯含量。结果表明,受苯乙烯污染的不同土壤的光谱特征分别位于1800,2200,2400 nm附近;受自身理化性质及苯乙烯含量影响,土壤光谱反射率的降速先增大后减小,直至苯乙烯在土壤中饱和,反射率变化趋于稳定。PLSR模型对土壤中苯乙烯含量的预测效果最优,SMLR模型次之,SVMR模型较差。PLSR模型的决定系数为0.982~0.998,模型稳定性强,其校正标准差与预测标准差的差值为0.004~0.016,模型预测精度高。
光谱学 红外光谱 苯乙烯 土壤 特征波段 预测模型 
光学学报
2020, 40(8): 0830001
作者单位
摘要
1 桂林理工大学环境科学与工程学院,广西 桂林 541004
2 生态环境部华南环境科学研究所,广东 广州 510530
为了快速监测和识别化学品火灾,搭建了基于傅里叶红外(Fourier Transform Infrared, FTIR)光谱仪的火焰光谱测试平台。在室内封闭条件下对丙烯腈、乙腈两种含氮化学品和无水乙醇的火焰光谱进行了检测分析研究(光谱范围为600~8000 cm-1)。结果表明,在相同的燃烧条件下,分子辐射强度从大到小依次为丙烯腈、乙腈和无水乙醇。这是由于丙烯腈和乙腈燃烧比无水乙醇燃烧时产生的H2O分子更多,且丙烯腈燃烧会产生大量炭黑。这三种化学品的燃烧火焰光谱经去噪平滑处理后大体相似,但在1650 cm-1、1830 cm-1、2857 cm-1和3750 cm-1波数处存在高温含氮气体独有的差异。实验结论表明,通过用傅里叶红外光谱仪检测含氮化学品的火焰光谱辐射,可以增强我国化学品火灾的快速监测与识别能力。
光谱学 含氮化学品 火焰光谱 光谱数据库 spectroscopy nitrogenous chemicals flame spectrum spectral database 
红外
2019, 40(12): 38

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!