作者单位
摘要
1 南开大学电子信息与光学工程学院, 天津 300350
2 北京农业信息技术研究中心, 北京 100097
3 农业部农业遥感机理与定量遥感重点实验室, 北京 100097
4 北京邮电大学电子工程学院, 北京 100876
农产品质量安全是社会广泛关注的重大民生问题。 近年来, 农产品生产过程中农药的广泛使用和滥用会导致农药残留, 对人类健康和环境造成潜在危害。 吡虫啉是一种硝基亚甲基类新烟碱内吸杀虫剂, 因其具有广谱、 高效和低毒的特性已广泛用于农业生产中, 但其过量残留也给人类的健康带来了威胁。 首先对超材料结构的透射谱进行了分析, 对共振频率的形成原因进行了解释; 其次分别在超材料结构和二氧化硅基底上涂覆了500 mg·L-1的吡虫啉溶液并进行了测量, 排除了二氧化硅基底的影响; 接着制备了3个梯度15个浓度的吡虫啉溶液, 分别为: 100~500 mg·L-1(梯度为100 mg·L-1)、 10~50 mg·L-1(梯度为10 mg·L-1)、 1~5 mg·L-1(梯度为1 mg·L-1); 测量了喷涂在超材料结构上的吡虫啉薄膜的太赫兹时域光谱, 根据太赫兹透射谱峰值频率红移量的不同实现了对不同溶液浓度的鉴别, 建立了峰值频率红移量和吡虫啉浓度的函数关系。 实验结果表明, 借助超材料的调制特性, 太赫兹光谱法可以检测到浓度低至1 mg·L-1的吡虫啉薄膜。 将实验测得的不同浓度吡虫啉溶液的折射率, 代入CST软件进行仿真验证, 结果说明不同浓度的吡虫啉的透射曲线具有不同程度的红移, 且红移量随着浓度的增大而增加。 实验和仿真结果表明, 超材料对太赫兹光谱透射峰值频率的调制可用于低浓度吡虫啉含量的太赫兹时域光谱检测。 此研究为食品基质中农药残留的检测提供了一种新方法。
超材料 太赫兹时域光谱 吡虫啉 频移 Metamaterials Terahertz time-domain spectroscopy Imidacloprid Frequency shift 
光谱学与光谱分析
2021, 41(4): 1044
作者单位
摘要
1 火箭军工程大学作战保障学院, 陕西 西安 710025
2 中国人民武装警察部队工程大学信息工程学院, 陕西 西安 710086
针对可见光和近红外双波段场景分类存在图像标注样本少和特征融合质量低的问题,提出了一种基于卷积神经网络(CNN)特征提取和朴素贝叶斯决策融合的双波段场景分类方法。首先,将基于预训练的CNN模型作为双波段图像的特征提取器,避免标注样本少导致的过拟合问题;然后,通过主成分分析降维和特征归一化方法,提高支持向量机的计算速度和每个波段的分类性能;最后,以双波段后验概率为朴素贝叶斯先验概率,构建了决策融合模型,实现场景融合分类。在公开数据集上的实验结果表明,相比单一波段分类和双波段特征级联融合分类方法,本方法的识别率有明显提升,可达到94.3%;比基于传统特征的最优方法高6.4个百分点,与基于CNN的方法识别率相近,且执行简单高效。
机器视觉 图像分类 朴素贝叶斯模型 双波段场景 卷积神经网络 决策融合 
激光与光电子学进展
2021, 58(4): 0415006
作者单位
摘要
1 福建农林大学机电工程学院, 福建 福州 350012
2 北京农业信息技术研究中心, 北京 100097
3 农业部农业遥感机理与定量遥感重点实验室, 北京 100097
针对土壤中铅含量的定量检测问题, 本研究基于太赫兹光谱技术对不同pH下土壤中铅含量的最佳反演预测模型进行了探索性研究。 分别制备了pH为8.5, 7.0和5.5的含铅土壤样品, 采集样品的太赫兹光谱数据, 并对光谱数据做了多元散射矫正(MSC)、 基线校正和Savitzky-Golay平滑等预处理。 对预处理后的光谱数据, 采用连续投影法(SPA)选取光谱数据的特征频率。 基于选取的特征频率分别采用偏最小二乘法(PLS)、 支持向量机(SVM)和误差反向传播神经网络(BPNN)建立土壤中铅含量的反演预测模型, 采用校正集相关系数(Rc)、 校正集均方根误差(RMSEC)、 预测集相关系数(Rp)、 预测集均方根误差(RMSEP)和剩余预测偏差(RPD)作为评价参数对模型性能进行评估, 确定铅在不同pH土壤中的最佳预测模型。 实验结果表明: 在经过SPA选择特征频率后的建模效果普遍比全光谱的效果好。 其中pH 8.5的样品最佳预测模型为SPA-PLS, Rc, Rp, RMSEC, RMSEP和RPD分别为0.997 7, 0.994 6, 14.52 mg·kg-1, 22.70 mg·kg-1和9.63; pH 7.0的样品最佳预测模型为SPA-SVM, Rc, Rp, RMSEC, RMSEP和RPD分别为0.996 2, 0.975 7, 20.25 mg·kg-1, 33.04 mg·kg-1和4.56; pH 5.5的样品最佳预测模型为SPA-BPNN, Rc, Rp, RMSEC, RMSEP和RPD分别为0.968 7, 0.974 4, 48.83 mg·kg-1, 55.03 mg·kg-1和4.44。 该研究结果为不同pH土壤中铅含量的光谱反演预测提供了一种新思路, 亦可为其他重金属在不同pH土壤中的含量反演预测模型提供理论方法和技术支持。
土壤  太赫兹光谱 偏最小二乘法 支持向量机 神经网络 Soil Lead Terahertzspectrum PLS SVM BPNN 
光谱学与光谱分析
2020, 40(8): 2397
作者单位
摘要
北京理工大学 光电学院 精密光电测试仪器及技术北京市重点实验室, 北京 100081
为了实现非球面面形误差的高精度测量, 研究了基于部分补偿原理的数字莫尔移相干涉技术中回程误差的消除方法。通过建立实际干涉仪和建模理想干涉仪, 并运用数字莫尔移相干涉技术, 获得实际干涉仪像面与被测非球面面形误差相关的波前; 分析了该测量系统的误差, 提出采用逆向优化法消除大面形误差时的回程误差实现被测非球面的面形误差检测。实验结果表明: 与轮廓仪结果比对, 面形误差较小时二分之一法重构面形误差, 峰谷值和均方根值分别优于λ/20, 面形误差较大时运用逆向优化法消除回程误差, 重构的非球面面形误差峰谷值和均方根值偏差均优于λ/5。基于逆向优化法的部分补偿数字莫尔移相干涉非球面检测, 有效消除了大面形误差时的回程误差, 可实现高精度的面形误差重构检测。
回程误差 数字莫尔移相干涉 部分补偿 二分之一法 逆向优化法 retrace error digital Moiré phase-shifting interferometry partial compensation one-half method reverse optimization procedure 
红外与激光工程
2018, 47(1): 0117005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!