赵勇兵 1,2,3,4,*张韵 1,2,3程哲 1,2,3黄宇亮 1,2,3,4[ ... ]李晋闽 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 半导体照明研发中心, 北京100083
2 半导体照明联合创新国家重点实验室, 北京100083
3 北京市第三代半导体材料及应用技术工程中心, 北京100083
4 中国科学院大学, 北京100049
介绍了一种具有高阈值电压和大栅压摆幅的常关型槽栅AlGaN/GaN金属氧化物半导体高电子迁移率晶体管。采用原子层淀积(ALD)方法实现Al2O3栅介质的沉积。槽栅常关型AlGaN/GaN MOS-HEMT的栅长(Lg)为2 μm, 栅宽(Wg)为0.9 mm(0.45 mm×2), 栅极和源极(Lgs)之间的距离为5 μm, 栅极和漏极(Lgd)之间的距离为10 μm。在栅压为-20 V时, 槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电仅为0.65 nA。在栅压为+12 V时, 槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电为225 nA。器件的栅压摆幅为-20~+12 V。在栅压Vgs=+10 V时, 槽栅常关型AlGaN/GaN MOS-HEMT电流和饱和电流密度分别达到了98 mA和108 mA/mm (Wg=0.9 mm), 特征导通电阻为4 mΩ·cm2。槽栅常关型AlGaN/GaN MOS-HEMT的阈值电压为+4.6 V, 开启与关断电流比达到了5×108。当Vds=7 V时, 器件的峰值跨导为42 mS/mm (Wg=0.9 mm, Vgs=+10 V)。在Vgs=0 V时, 栅漏间距为10 μm的槽栅常关型AlGaN/GaN MOS-HEMT的关断击穿电压为450 V, 关断泄露电流为0.025 mA/mm。
高阈值电压 大栅压摆幅 常关型 特征导通电阻 AlGaN/GaN AlGaN/GaN HEMT with Large Gate Swing 
发光学报
2016, 37(6): 720
赵勇兵 1,2,3,*张韵 1,2,3,4程哲 1,2,3黄宇亮 1,2,3,4[ ... ]李晋闽 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 半导体照明研发中心, 北京 100083
2 半导体照明联合创新国家重点实验室, 北京 100083
3 北京市第三代半导体材料及应用技术工程中心, 北京 100083
4 中国科学院大学, 北京 100049
采用原子层淀积(ALD)方法,制备了Al2O3 为栅介质的高性能AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT)。在栅压为-20 V时,MOS-HEMT的栅漏电比Schottky-gate HEMT的栅漏电低4个数量级以上。在栅压为+2 V时,Schottky-gate HEMT的栅漏电为191 μA;在栅压为+20 V时,MOS-HEMT的栅漏电仅为23.6 nA,比同样尺寸的Schottky-gate HEMT的栅漏电低将近7个数量级。AlGaN/GaN MOS-HEMT的栅压摆幅达到了±20 V。在栅压Vgs=0 V时, MOS-HEMT的饱和电流密度达到了646 mA/mm,相比Schottky-gate HEMT的饱和电流密度(277 mA/mm)提高了133%。栅漏间距为10 μm的AlGaN/GaN MOS-HEMT 器件在栅压为+3 V时的最大饱和输出电流达到680 mA/mm,特征导通电阻为1.47 mΩ·cm2。Schottky-gate HEMT的开启与关断电流比仅为105,MOS-HEMT的开启与关断电流比超过了109,超出了Schottky-gate HEMT器件4个数量级,原因是栅漏电的降低提高了MOS-HEMT的开启与关断电流比。在Vgs=-14 V时,栅漏间距为10 μm的AlGaN/GaN MOS-HEMT的关断击穿电压为640 V,关断泄露电流为27 μA/mm。
三氧化二铝 高击穿电压 金属氧化物半导体高电子迁移率晶体管 AlGaN/GaN AlGaN/GaN Al2O3 high breakdown voltage MOS-HEMT 
发光学报
2016, 37(5): 578
作者单位
摘要
中国科学院半导体研究所 照明研发中心,北京 100083
对基于InGaN/GaN量子阱的蓝绿双波长发光二极管的材料生长和发光性质进行了研究.通过设计生长多组具有不同参量的外延结构,获得了优化的双波长量子阱结构参量,指出量子阱位置的分布、蓝绿阱间垒的宽度以及材料构成对量子阱发光性能均有较大影响.对双波长发光二极管器件光学性质进行了研究,结果表明,InGaN/GaN量子阱发光更依赖于In团簇形成的局域激子发光,从而导致了小电流下的反常光学现象.通过数值计算材料内部极化场的强度,对波长漂移的原因进行了解释,并通过双波长发光效率拟合分析了发光二极管“droop”效应可能的产生机理.
InGaN/GaN量子阱 双波长 局域激子发光 极化效应 “droop”效应 InGaN/GaN quantum well Dual-wavelength Localized exciton emitting Polarization effect “droop” effect 
光子学报
2013, 42(10): 1135

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!