作者单位
摘要
武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北 武汉 430081
基于时域有限差分法仿真模拟了毫米级超材料的中远红外光谱响应,并结合电场散射效应分析了毫米方形图案的边缘电场分布对红外反射率的影响。通过参数扫描法优化得到了方形单元的最优厚度。将边缘区域离散化为独立单元,并将xy方向分别设置为完美匹配层(PML)、periodic边界条件,通过迭代计算及加权叠加获得了毫米方形超材料的红外光谱响应及电场分布。结果表明,该超材料在2~16 μm内的红外反射率保持在81.9%以上,最高可达87.05%。当图案占空比相同时,单元周期的减小增强了超材料边缘区域的电场散射效应,导致其在8~10 μm远红外波段内的反射率保持在84.25%以上。实测结果与仿真结果较好地吻合,这为毫米级红外辐射抑制超材料的设计提供了新的思路。
光学设计 毫米级超材料 电场散射效应 时域有限差分法 中远红外高反射 
光学学报
2024, 44(4): 0422001
作者单位
摘要
武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北 武汉 430081
基于能带理论设计了一种用于红外高反射的新型一维光子晶体。根据麦克斯韦方程的传输矩阵计算基础,得到了布洛赫波与入射光频率的色散关系,并由此构建了光子晶体能带结构。入射光波在介电常数周期变化结构中的布里渊区边界多次反射后会形成驻波,从而产生光子禁带。叠加3~5 μm和8~12 μm两种周期结构的光子晶体可以使光子禁带拓宽2.2×1013 Hz。在此基础上,选用折射率色散小的材料体系Si/ZnO设计并制备了13层一维光子晶体,该晶体在3~5 μm和8~12 μm红外波段的平均反射率在91.3%以上。实验结果与仿真结果吻合,验证了模型和理论的高可靠性。
薄膜 低层数光子晶体 传输矩阵 布里渊区边界 禁带宽度调控 红外高反射 
光学学报
2023, 43(9): 0931002
作者单位
摘要
武汉科技大学, 省部共建耐火材料与冶金国家重点实验室, 武汉 430081
为了提升磷酸盐胶黏剂的耐高温性能, 以自制的磷酸二氢铝为基体, 纳米Al2O3、Si粉和低温熔融玻璃粉(Zn-B-Si-Al-R)等为填料, 制备出一种新型磷酸盐粘结剂, 并对其界面反应机理进行了分析。结果表明: 当Fe2O3、ZrO2、CuO的添加量分别为5%、10%、15%(质量分数)时, 粘结剂在500 ℃的高温拉伸强度为5.28 MPa, 质量损失率仅为7.8%。从室温至500 ℃, 粘结剂与不锈钢基体热膨胀系数匹配良好, 两者的差值始终小于1.5×10-6 K-1。同时, 电势差异促进了Fe与Cu的离子交换, 在界面处形成成分梯度层, 有效缓解因热失配而产生的热应力, 提高粘结剂在高温下的粘结强度。
磷酸盐粘结剂 热处理 耐高温强度 界面反应 phosphate adhesive heat treatment high-temperature strength interface reaction 
硅酸盐学报
2023, 51(4): 1042
作者单位
摘要
1 武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 安迈铝业青岛有限公司,山东 青岛266510
为改善SiC基复合陶瓷的抗氧化性能,以SiC基复合陶瓷为对象,研究了B4C的添加量对SiC基复合陶瓷显微结构、力学性能和抗氧化性能的影响。结果表明,添加B4C可提高材料中SiC的结晶性和石墨化程度;经1 450 ℃处理后,当B4C添加量为6%(质量分数)时,SiC基复合陶瓷的线变化率由1.39%降至0.58%;抗折强度和抗压强度分别由28.06 MPa和48.03 MPa提高到50.25 MPa和98.58 MPa(分别提高1.8倍和2倍);当B4C添加量由0增加到6%时,SiC基复合陶瓷经1 400 ℃烧结(氧化气氛)的氧化指数由30.33%降低至18.35%,氧化层厚度由3.52 mm降至0.23 mm。添加B4C可提高SiC晶须的生成量,显著增强SiC基复合陶瓷的强度和抗氧化性。
碳化硅基复合陶瓷 碳化硼 力学性能 抗氧化性 silicon carbide-based composite ceramics boron carbide mechanical properties oxidation resistance 
硅酸盐学报
2023, 51(3): 730
作者单位
摘要
1 武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉新芯集成电路制造有限公司,武汉 430223
以TiO2为烧结助剂,采用反应烧结法在B4C陶瓷中原位生成TiB2,制备出致密的B4C陶瓷,并对其强化机制进行了分析。结果表明:随着TiO2添加量的增加,B4C陶瓷的致密度和抗弯强度先增大后减小,断裂韧性不断增大。当TiO2添加量为5% (质量分数)、烧结温度为1 700 ℃时,B4C陶瓷致密度达到99.6%;当TiO2加入量为15%时,B4C陶瓷的Vickers硬度为36.0 GPa,断裂韧性为4.38 MPa·m1/2,抗弯强度为405 MPa,综合性能最优。原位生成的TiB2抑制了B4C陶瓷晶粒长大,消除了裂纹尖端应力,使裂纹产生偏转和分叉,对B4C陶瓷起到细晶强化和增韧作用。
放电等离子体烧结 碳化硼 二硼化钛 力学强度 spark plasma sintering boron carbide titanium diboride mechanical properties 
硅酸盐学报
2022, 50(9): 2414
作者单位
摘要
武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081
SiC纳米线具有吸波性能强、作用频带宽、密度低的优点,但是由于SiC较差的阻抗匹配条件和较低的电导率,影响了其吸波性能的进一步提高。为了调节SiC的电子结构,改善其电磁性能,以硅微粉、活性炭、La2O3粉末为原料通过碳热还原法在1 600 ℃合成了La3+掺杂SiC纳米线。结果表明:掺杂La3+能够增大SiC纳米线的长径比和堆垛层错密度,增强其形成三维网状结构和界面极化的能力,其介电性能得到了提高。在2~18 GHz范围内,其介电实部由3.08~13.48(x=0)提升至3.33~19.75(x=1.0%),介电虚部由3.45~6.98(x=0)提升至5.03~11.56(x=1.0%)。同时La3+掺杂提高了SiC纳米线的电导率,增强了其电导损耗。由于SiC纳米线界面极化和电导损耗的同时增强,掺杂2.0%的La3+的SiC纳米线在厚度为2.0 mm时达到了最小反射损耗(RL) -31.46 dB,有效吸收带宽(RL<-10 dB)为7.18 GHz。通过第一性原理计算研究了SiC纳米线及La3+掺杂SiC纳米线的电子结构,结果表明,La3+掺杂后SiC纳米线的带隙减小,验证了其导电性的增强。La3+掺杂能够在引入掺杂元素的同时增大SiC纳米线的堆垛层错密度,克服了掺杂元素时堆垛层错密度降低的现象,为合成高吸波特性SiC纳米线提供了思路。
碳化硅纳米线 镧离子掺杂 电磁波吸收 第一性原理 有效吸收带宽 silicon carbide nanowires lanthanum ion doping electromagnetic wave absorption first principles effective absorption bandwidth 
硅酸盐学报
2022, 50(7): 1919
作者单位
摘要
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
红外高反射薄膜是实现超低损耗光学器件、红外隐身等技术的关键基础材料。根据多层光学薄膜的传输矩阵原理,得到一维光子晶体的反射率和透射率表达式,分析推导了一维光子晶体的能带结构。利用传输矩阵原理,以Ge和SiO2为介质材料设计了28层λ/4一维光子晶体结构。随后,利用有限元法计算其光子能带,使用折射率差值更大的PbSe和SiO2,计算出光子晶体的第一、第二禁带分别为2.01×1013 ~ 4.11×1013Hz和8.13×1013~1.02×1014Hz。优化后的λ/4一维光子晶体结构层数低至14层,实现了3~5 μm和8~14 μm的高反射率。
计算仿真 红外高反射膜结构 能带曲线 光子晶体 computational simulation infrared high reflective film structure energy band curve photonic crystal 
硅酸盐学报
2022, 50(5): 1310
作者单位
摘要
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉430081
2 武汉科技大学信息科学与工程学院, 湖北 武汉 430081
研究了具有异质结构且适用于3~5 μm红外光区的一维光子晶体高反射镜,系统地分析了光波在一维周期性光子晶体中的反射特性,通过传输矩阵计算和仿真验证了λ/4介质膜系的反射率和最佳禁带宽度。在此基础上,选取Si和Y2O3两种材料,构造了24层一维光子晶体的双异质结构,仿真结果表明:在3~5 μm红外波段,该结构的反射率为97.418%~99.999%。为了减少膜层数量,以金属银为衬底,设计了以Si和Y2O3为介质层结构的一维金属增强型光子晶体,其总层数为9层,仿真结果表明:在3~5 μm红外波段,其反射率为98.943%~99.979%。
光学设计 高反射镜 光子晶体 λ/4介质膜系; 异质结构 金属增强型光子晶体 
光学学报
2018, 38(9): 0922001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!