作者单位
摘要
沈阳理工大学 装备工程学院, 沈阳 110159
采用理论推导与实验相结合的方法,研究了强冲击LY12铝靶产生闪光的辐射强度演化特征。利用建立的光纤瞬态高温计测量系统与二级轻气炮加载系统,进行了6种实验条件下的强冲击实验。每组实验使用1组光纤探头,光纤探头直接对准碰撞点安装。通过实验所获原始数据结合标定得到了闪光辐射强度随时间的变化关系。实验结果表明,在给定实验条件及光纤探头安装方案下,闪光信号上升阶段的上升系数和衰减阶段的衰减系数在1~5之间。弹丸入射角度相同时,冲击速度越大,最大闪光辐射强度也越大。LY12铝弹丸强冲击LY12铝靶产生的最大闪光辐射强度,对测量波长为488~667 nm范围内的幂指数值在7.5~9.0之间变化。
强冲击 碰撞闪光 高温计 辐射强度 演化特征 strong shock impact light flash pyrometer light flash radiation intensity evolutionary characteristics 
强激光与粒子束
2014, 26(7): 074003
作者单位
摘要
1 沈阳理工大学 装备工程学院, 沈阳 110159
2 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
为了研究超高速碰撞产生等离子体的粒子能量对航天器电路中元器件的毁伤,获得超高速碰撞产生等离子体粒子能量的时空分布特性是十分必要的。基于超高速碰撞产生稀薄等离子体中带电粒子的运动速度、等离子体的扩散特点,推导出等离子体的粒子能量密度与带电粒子密度及带电粒子运动速度的关系式。进而通过对超高速碰撞2024-T4铝靶实验采集的原始数据分析,利用Matlab编程得到了超高速碰撞2024-T4铝靶产生膨胀等离子体云物理过程中,等离子体的粒子能量密度与带电粒子持续时间及被测点到碰撞点距离的时空分布规律。
超高速碰撞 等离子体 能量密度 时空分布 hypervelocity impact plasma energy density temporal and spatial distribution 
强激光与粒子束
2013, 25(11): 3025
作者单位
摘要
1 沈阳理工大学 装备工程学院, 沈阳 110159,
2 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
3 沈阳理工大学 装备工程学院, 沈阳 110159
为研究超高速碰撞产生闪光的辐射演化特征,利用建立的瞬态光纤高温计测量系统结合二级轻气炮加载系统,进行了4种实验条件下的超高速碰撞实验。每组实验使用一组光纤探头,基于实验所获原始数据结合标定,通过Matlab编程处理得到了给定实验条件及光纤探头安装方案条件下的闪光强度演化,利用比率法得到碰撞闪光的辐射温度演化特征。实验结果表明,在488~667 nm波长范围内超高速碰撞LY12铝靶产生的闪光强度与辐射温度峰值随碰撞角度(与靶板平面的夹角)的增大而减小。
超高速碰撞 碰撞闪光 高温计 辐射 hypervelocity impact impact light flash pyrometer radiation 
强激光与粒子束
2012, 24(10): 2454
作者单位
摘要
沈阳理工大学 装备工程学院, 沈阳 110159
为了诊断超高速碰撞产生的电磁辐射,建立了超高速碰撞产生电磁辐射的实验和微波诊断系统。利用建立的微波诊断系统,进行了碰撞速度分别为4.60和4.66 km/s条件下超高速碰撞LY12铝靶产生电磁辐射的微波诊断,分析了实验中产生电磁辐射与靶板厚度及裂纹数的关系。实验结果表明:在实验条件相近的情况下,靶板厚度越小,产生的微波辐射强度越大;微波辐射功率正比于碰撞产生的微裂纹数。同时揭示了热激发产生电子和裂纹的存在为超高速碰撞产生电磁辐射的物理机制。
超高速碰撞 等离子体 电磁辐射 微波诊断 hypervelocity impact plasma electromagnetic radiation microwave diagnostic 
强激光与粒子束
2012, 24(9): 2212
作者单位
摘要
1 沈阳理工大学 装备工程学院, 沈阳 110159
2 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
为了获得超高速碰撞产生等离子体粒子密度的时空分布特性,利用点电荷电场的1维理论模型,综合运用质量守恒方程、动量守恒方程、能量守恒方程和麦克斯韦方程,推导出了等离子体在膨胀过程中粒子密度的时空分布规律。通过对超高速碰撞2024-T4铝靶实验采集的原始数据分析,得到了超高速碰撞2024-T4铝靶产生膨胀等离子体云粒子密度的时空演化规律。
超高速碰撞 等离子体 粒子密度 时空分布 hypervelocity impact plasma particle density temporal and spatial distribution 
强激光与粒子束
2012, 24(5): 1126
作者单位
摘要
沈阳理工大学 装备工程学院, 沈阳 110159
为了研究超高速碰撞产生的闪光强度特征,利用建立的光学高温计测量系统并结合二级轻气炮加载系统,进行了2种实验条件下的超高速碰撞实验。每组实验使用2组光纤探头,1组为直接对准碰撞点安装,另1组为侧向对准碰撞点安装。通过实验所获原始数据的分析表明: 在给定实验条件及光纤探头安装方案下,在405~633 nm波长范围内超高速碰撞2024-T4铝靶产生的闪光强度峰值随波长的增大而增强;在波长为667 nm附近闪光强度峰值减小。
超高速碰撞 碰撞闪光 高温计 闪光强度 hypervelocity impact impact light flash pyrometer light flash intensity 
强激光与粒子束
2011, 23(12): 3412
作者单位
摘要
沈阳理工大学 装备工程学院, 沈阳 110159
为研究超高速弹丸碰撞靶板产生等离子体诱生的磁场,引用已有关于激光产生等离子体的磁场理论,结合麦克斯韦方程和法拉第电磁感应定律得到了超高速碰撞产生等离子体诱生磁场的1维理论模型。基于已有关于超高速正碰撞产生半球状等离子体云诱生磁场的偏微分方程,建立了柱坐标系下超高速斜碰撞产生部分椭球状等离子体云的偏微分方程。通过感应线圈进行了磁感应强度的实验测量,实验结果与模型预言表明,该模型可近似地描述超高速斜碰撞产生等离子体诱生的磁感应强度。
冲击波 超高速碰撞 等离子体 磁场 shock waves hypervelocity impact plasma magnetic fields 
强激光与粒子束
2011, 23(8): 2219
作者单位
摘要
沈阳理工大学 装备工程学院, 沈阳 110159
针对探针与接地极板间的阻抗匹配问题, 通过对超高速碰撞产生等离子体特征参量诊断系统的理论分析, 获得了超高速碰撞产生等离子体的频率组成特征;基于该理论特征建立了一种适用于超高速碰撞产生等离子体的探针测量系统, 并利用该探针测量系统进行了LY12实心球形铝弹丸超高速碰撞LY12铝靶实验, 得到了该实验中超高速碰撞产生等离子体的功率谱特征。理论分析及实验获得的功率谱结果均表明超高速碰撞产生的等离子体具有低频为主的频谱特征:当频率低于5.8 kHz时, 功率谱线比较平滑且幅值较小;频率达到11.0 kHz时, 功率谱线的峰值和功率全谱峰值相近。因此频率在5.8~11.0 kHz范围的低频频段对功率谱线的峰值贡献较大, 频率超过11.0 kHz时, 功率谱线的大幅度抖动对功率谱线的峰值贡献较小。理论及实验结果证明了实验系统的可靠性和实现过程的合理性。
超高速碰撞 等离子体 探针 频谱响应特征 功率谱 hypervelocity impact plasma probe spectral response characteristic power spectrum 
强激光与粒子束
2011, 23(5): 1365
作者单位
摘要
1 沈阳理工大学 装备工程学院, 沈阳 110159
2 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
综述了国外在超高速碰撞产生等离子体的电磁特性研究方面的现状,主要包括电子温度、等离子体的粒子密度、等离子体的振荡频率及产生的磁场特征等方面。利用等离子体特征参量诊断的扫描Langmuir探针系统、磁感应强度测量的线圈系统及实验系统,进行了超高速碰撞产生等离子体实验, 分析了实验中产生等离子体的电磁特性。
超高速碰撞 等离子体 电磁特性 Langmuir探针 磁场强度 hypervelocity impact plasma electromagnetic characteristics Langmuir probe magnetic field intensity 
强激光与粒子束
2011, 23(4): 853
作者单位
摘要
1 沈阳理工大学 装备工程学院, 沈阳 110159
2 东北大学 机械工程与自动化学院, 沈阳 110004
为了了解超高速碰撞产生等离子体的物理机制,采用理论方法对超高速碰撞LY12铝靶各物理过程的能量分配进行了分析,涉及到熔化相变、气化相变及等离子体形成过程的能量消耗。揭示了碰撞喷出物形成过程中各物理阶段对气化、等离子体形成的影响因素,包括碰撞的附加热机制、材料碰撞后等离子体羽的形成及等离子体羽膨胀的物理机制,并给出了模型描述。
超高速碰撞 气化 等离子体 物理机制 hypervelocity impact vaporization plasma physical mechanism 
强激光与粒子束
2011, 23(1): 229

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!